

Basics of Modes of Heat Transfer Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Basics of Modes of Heat Transfer Formulas

Basics of Modes of Heat Transfer 1) Heat Transfer through Plane Wall or Surface 🖒 Open Calculator $\mathbf{f} \mathbf{x} = -\mathbf{k} \cdot \mathbf{A}_{\mathrm{c}} \cdot rac{\mathbf{t}_{\mathrm{o}} - \mathbf{t}_{\mathrm{i}}}{\mathbf{w}}$ ex $799.8571W = -10.18W/(m^*K) \cdot 11m^2 \cdot \frac{321K - 371K}{-}$ 2) Ohm's Law Open Calculator fx $V = I \cdot R$ ex $31.5V = 2.1A \cdot 15\Omega$ 3) Overall Heat Transfer based on Thermal Resistance 🕻 fx $q_{overall} = rac{\Delta T_{Overall}}{\Sigma R_{Thermal}}$ Open Calculator ex $2.794715W = \frac{55K}{19.68K/W}$ 4) Radial Heat Flowing through Cylinder 🕑 Open Calculator $\mathbf{Q} = \mathbf{k} \cdot 2 \cdot \pi \cdot \Delta \mathbf{T} \cdot \frac{\mathbf{l}}{\ln\left(\frac{\mathbf{r}_{\text{outer}}}{\mathbf{r}_{\text{inner}}} ight)}$ ex 2731.399J = 10.18W/(m*K) $\cdot 2 \cdot \pi \cdot 5.25$ K $\cdot \frac{6.21$ m}{ln($\frac{7.51}{3.5}$ m)}

3/9

10) Thermal Diffusivity (a)
(a)
$$a = \frac{k}{\rho \cdot C_o}$$

(b) $a = \frac{k}{\rho \cdot C_o}$
(c) $a = \frac{1}{5.51 \text{ kg/m}^3 \cdot 4 \text{ J}/(\text{ kg}^*\text{K})}$
(c) $a = \frac{1}{5.51 \text{ kg/m}^3 \cdot 4 \text{ J}/(\text{ kg}^*\text{K})}$
(c) $a = \frac{1}{A_{expo} \cdot h_{conv}}$
(c) $a = \frac{1}{A_{expo} \cdot h_{conv}}$
(c) $a = \frac{1}{11.1 \text{ m}^2 \cdot 20 \text{ W/m}^{2*}\text{K}}$
(c) $a = \frac{1}{11.1 \text{ m}^2 \cdot 20 \text{ W/m}^{2*}\text{K}}$
(c) $a = \frac{1}{11.1 \text{ m}^2 \cdot 20 \text{ W/m}^{2*}\text{K}}$
(c) $a = \frac{1}{4 \cdot \pi \cdot \text{k} \cdot \text{r}_1 \cdot \text{r}_2}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$
(c) $a = \frac{6m - 5m}{4 \cdot \pi \cdot 2 \text{ W/(m}^*\text{K}) \cdot 5m \cdot 6m}$

Variables Used

- Abase Base Area (Square Meter)
- Ac Cross Sectional Area (Square Meter)
- Aexpo Exposed Surface Area (Square Meter)
- AExposed Exposed Surface Area (Square Meter)
- Co Specific Heat Capacity (Joule per Kilogram per K)
- Eb Emissive Power per Unit Area (Watt)
- ELeaving Energy Leaving Surface (Joule)
- F Geometric View Factor
- hconv Co-efficient of Convective Heat Transfer (Watt per Square Meter per Kelvin)
- htransfer Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- | Electric Current (Ampere)
- J Radiosity (Watt per Square Meter)
- k Thermal Conductivity (Watt per Meter per K)
- k Thermal Conductivity (Watt per Meter per K)
- **k** Thermal Conductivity (Watt per Meter per K)
- I Length of Cylinder (Meter)
- **q** Heat Flow Rate (Watt)
- **Q** Heat (Joule)
- **q**overall Overall Heat Transfer (Watt)
- R Resistance (Ohm)
- **r**₁ Radius of 1st Concentric Sphere (Meter)
- r₂ Radius of 2nd Concentric Sphere (Meter)
- rinner Inner Radius of Cylinder (Meter)
- router Outer Radius of Cylinder (Meter)
- rth Thermal Resistance of Sphere Without Convection (Kelvin per Watt)
- Rth Thermal Resistance (Kelvin per Watt)
- SABody Body Surface Area (Square Meter)
- T₁ Temperature of Surface 1 (Kelvin)

- T₂ Temperature of Surface 2 (Kelvin)
- Ta Ambient Air Temperature (Kelvin)
- Te Effective Radiating Temperature (Kelvin)
- t_i Inside Temperature (Kelvin)
- to Outside Temperature (Kelvin)
- tsec Time in seconds (Second)
- **T**_w Surface Temperature (Kelvin)
- V Voltage (Volt)
- W Width of Plane Surface (Meter)
- α Thermal Diffusivity (Square Meter Per Second)
- ΔT Temperature Difference (Kelvin)
- ΔT_{Overall} Overall Temperature Difference (Kelvin)
- ε Emissivity
- p Density (Kilogram per Cubic Meter)
- ΣR_{Thermal} Total Thermal Resistance (Kelvin per Watt)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: [Stefan-BoltZ], 5.670367E-8
 Stefan-Boltzmann Constant
- Function: In, In(Number) The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Electric Current in Ampere (A) Electric Current Unit Conversion
- Measurement: Temperature in Kelvin (K) Temperature Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Energy in Joule (J) Energy Unit Conversion
- Measurement: Power in Watt (W) Power Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω) Electric Resistance Unit Conversion
- Measurement: Temperature Difference in Kelvin (K) Temperature Difference Unit Conversion
- Measurement: Thermal Resistance in Kelvin per Watt (K/W) Thermal Resistance Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K)) Thermal Conductivity Unit Conversion
- Measurement: Electric Potential in Volt (V) Electric Potential Unit Conversion
- Measurement: Specific Heat Capacity in Joule per Kilogram per K (J/(kg*K)) Specific Heat Capacity Unit Conversion

- Measurement: Heat Flux Density in Watt per Square Meter (W/m²) Heat Flux Density Unit Conversion
- Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m²*K) Heat Transfer Coefficient Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion
- Measurement: Diffusivity in Square Meter Per Second (m²/s) Diffusivity Unit Conversion

Check other formula lists	
Basics of Modes of Heat Transfer Formulas	Convection Heat Transfer Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

3/28/2024 | 5:30:30 AM UTC

Please leave your feedback here ...

