Canal Design Formulas...

Canal Design Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Canal Design Formulas

Canal Design 🕑

1) Area of Trapezoidal Channel Section for Smaller Discharge 🕑

fx
$$\mathbf{A} = (\mathbf{B} \cdot \mathbf{y}) + \mathbf{y}^2 \cdot (\mathbf{ heta} + \cot(\mathbf{ heta}))$$

$$83.25277 \text{m}^2 = (48 \text{m} \cdot 1.635 \text{m}) + (1.635 \text{m})^2 \cdot (45\degree + \cot(45\degree))$$

2) Area of Triangular Channel Section for Small Discharges 🕑

fx
$$\mathbf{A} = \mathrm{y}^2 \cdot (\mathbf{ heta} + \cot(\mathbf{ heta}))$$

$$\texttt{ex} \ 4.772771 \text{m}^{2} = (1.635 \text{m})^{2} \cdot (45° + \cot(45°))$$

3) Hydraulic Mean Depth of Triangular Section 🕑

fx
$$\mathbf{H} = rac{\mathrm{y}^2 \cdot (\mathbf{ heta} + \mathrm{cot}(\mathbf{ heta}))}{2 \cdot \mathrm{y} \cdot (\mathbf{ heta} + \mathrm{cot}(\mathbf{ heta}))}$$

$$\mathbf{ex} \ 0.8175 \mathrm{m} = \frac{(1.635 \mathrm{m})^2 \cdot (45^\circ + \mathrm{cot}(45^\circ))}{2 \cdot 1.635 \mathrm{m} \cdot (45^\circ + \mathrm{cot}(45^\circ))}$$

4) Perimeter of Trapezoidal Channel Section for Small Discharges 🚰

fx
$$\mathbf{P} = \mathbf{B} + (2 \cdot \mathbf{y} \cdot \mathbf{ heta} + 2 \cdot \mathbf{y} \cdot \cot(\mathbf{ heta}))$$

ex
$$53.83825m = 48m + (2 \cdot 1.635m \cdot 45\degree + 2 \cdot 1.635m \cdot \cot(45\degree))$$

5) Perimeter of Triangular Channel Section for Small Discharges 🕑

fx
$$\mathbf{P} = 2 \cdot \mathbf{y} \cdot (\mathbf{ heta} + \cot(\mathbf{ heta}))$$

$$5.838252 \mathrm{m} = 2 \cdot 1.635 \mathrm{m} \cdot (45\degree + \mathrm{cot}(45\degree))$$

Open Calculator 🖸

Open Calculator 🖸

Open Calculator 🗹

Open Calculator

Open Calculator

Design of Non-Scouring Stable Channels having Protected Side Slopes (Shield's Entrainmnet Method)

6) Drag Force Exerted by Flow C
(A)
$$F_1 = K_1 \cdot (C_D) \cdot (d^2) \cdot (0.5) \cdot (\rho_w) \cdot (V^{-})$$

(C) $Open Calculator (C)$
(C) $Outs228N = 1.20 \cdot (0.47) \cdot ((6mm)^2) \cdot (0.5) \cdot (1000kg/m^3) \cdot (1.5m/s)$
(C) $Open Calculator (C)$
(C) $C_c = 0.155 + (0.409 \cdot \frac{d^2}{\sqrt{1+0.77 \cdot d^2}})$
(Open Calculator (C) $Open Calculator (C)$
(C) $Outs5kN/m^2 = 0.155 + (0.409 \cdot \frac{(6mm)^2}{\sqrt{1+0.77 \cdot (6mm)^2}})$
(C) $Outs5kN/m^2 = 0.155 + (0.409 \cdot \frac{(6mm)^2}{\sqrt{1+0.77 \cdot (6mm)^2}})$
(C) $Outs5kN/m^2 = 0.155 + (0.409 \cdot \frac{(6mm)^2}{\sqrt{1+0.77 \cdot (6mm)^2}})$
(C) $Open Calculator (C)$
(C) $C_c = 0.056 \cdot \Gamma_w \cdot d \cdot (S_s - 1)$
(C) $Open Calculator (C)$
(C) $Open Calculator (C)$
(C) $Open Calculator (C)$
(C) $C_c = 0.056 \cdot \Gamma_w \cdot d \cdot (S_s - 1)$
(C) $Open Calculator (C)$
(C) $Open Calculator (C)$
(C) $Open Calculator (C)$
(C) $C_c = 0.056 \cdot \Gamma_w \cdot d \cdot (S_s - 1)$
(C) $Open Calculator (C)$
(C) $Open Calculator (C)$
(C) $Open Calculator (C)$
(C) $C_c = 0.056 \cdot \Gamma_w \cdot d \cdot (S_s - 1)$
(C) $Open Calculator (C)$
(C) $Open Calculator ($

Canal Design Formulas...

10) Unprotected Side Slopes Shear Stress Required to Move Single Grain 🚰

Kennedy's Theory 🕑

11) Kutter's Formula 🗹

$$\mathbf{x} = \left(rac{1}{n} + rac{23 + \left(rac{0.00155}{\mathrm{S}}
ight)}{1 + \left(23 + \left(rac{0.00155}{\mathrm{S}}
ight)
ight)} \cdot \left(rac{n}{\sqrt{\mathrm{R}}}
ight)
ight) \cdot \left(\sqrt{\mathrm{R}\cdot\mathrm{S}}
ight)
ight)$$

ex

$$1.536432 \text{m/s} = \left(\frac{1}{0.0177} + \frac{23 + \left(\frac{0.00155}{0.000333}\right)}{1 + \left(23 + \left(\frac{0.00155}{0.000333}\right)\right)} \cdot \left(\frac{0.0177}{\sqrt{2.22 \text{m}}}\right)\right) \cdot \left(\sqrt{2.22 \text{m} \cdot 0.000333}\right)$$

12) R G Kennedy Equation for Critical Velocity

fx
$$\mathbf{V}^{\circ} = 0.55 \cdot \mathbf{m} \cdot \left(\mathbf{Y}^{0.64}
ight)$$
ex $1.498227 \mathrm{m/s} = 0.55 \cdot 1.2 \cdot \left((3.6 \mathrm{m})^{0.64}
ight)$

Lacey's Theory 🕑

13) Area of Regime Channel Section 🕑

$$\mathbf{A} = \left(\frac{\mathbf{Q}}{\mathbf{V}}\right)$$

$$\mathbf{A} = \left(\frac{\mathbf{Q}}{\mathbf{V}}\right)$$

$$\mathbf{A} = \left(\frac{\mathbf{Q}}{\mathbf{V}}\right)$$

$$\mathbf{A} = \left(\frac{35 \mathrm{m}^3/\mathrm{s}}{1.257 \mathrm{m/s}}\right)$$

$$\mathbf{A} = \left(\frac{35 \mathrm{m}^3/\mathrm{s}}{1.257 \mathrm{m/s}}\right)$$

$$\mathbf{C} = \left(\frac{35 \mathrm{m}^3/\mathrm{s}}{1.257 \mathrm{m/s}}\right)$$

Open Calculator

Open Calculator 🕑

Canal Design Formulas...

14) Bed Slope of Channel C
(x)
$$S = \frac{f^{\frac{5}{3}}}{3340 \cdot Q^{\frac{1}{6}}}$$

(x) $0.001824 = \frac{(4.22)^{\frac{5}{3}}}{3340 \cdot (35m^3/s)^{\frac{1}{6}}}$
(b) Hydraulic Mean Depth for Regime Channel using Lacey's Theory C

$$\mathbf{fx} \mathbf{R} = \left(\frac{5}{2}\right) \cdot \left(\frac{(\mathbf{V})^2}{\mathbf{f}}\right)$$
$$\mathbf{ex} \mathbf{0.936048m} = \left(\frac{5}{2}\right) \cdot \left(\frac{(1.257 \text{m/s})^2}{4.22}\right)$$

16) Velocity for Regime Channel using Lacey's Theory 🕑

$$V = \left(\frac{Q \cdot f^2}{140}\right)^{0.166}$$

$$V = \left(\frac{35m^3/s \cdot (4.22)^2}{140}\right)^{0.166}$$

$$V = \left(\frac{35m^3/s \cdot (4.22)^2}{140}\right)^{0.166}$$

17) Wetted Perimeter of Channel 🕑

fx
$$P = 4.75 \cdot \sqrt{Q}$$

ex $28.10138m = 4.75 \cdot \sqrt{35m^3/s}$

Open Calculator 🛃

Variables Used

- A Area of Channel (Square Meter)
- **B** Bed Width of Channel (Meter)
- C_D Coefficient of Drag Exerted by Flow
- d Diameter of Particle (Millimeter)
- f Silt Factor
- **F**₁ Drag Force Exerted by Flow (Newton)
- H Hydraulic Mean Depth of Triangular Section (Meter)
- K₁ Factor Depending on Shape of Particles
- **m** Critical Velocity Ratio
- **n** Rugosity Coefficient
- P Perimeter of Channel (Meter)
- Q Discharge for Regime Channel (Cubic Meter per Second)
- R Hydraulic Mean Depth in Meters (Meter)
- S Bed Slope of Channel
- **S**_s Specific Gravity of Particles
- V Velocity of Flow in Meter (Meter per Second)
- V° Velocity Flow at Bottom of Channel (Meter per Second)
- y Depth of Canal with Trapezoidal Cross Section (Meter)
- Y Water Depth in Channel (Meter)
- **F**_w Unit Weight of Water (Kilonewton per Cubic Meter)
- ζ_c Resisting Shear against Movement of Particle (Kilonewton per Square Meter)
- Çc Critical Shear Stress on Horizontal Bed (Kilonewton per Square Meter)
- θ Side Slope (Degree)
- ρ_w Density of Flowing Fluid (Kilogram per Cubic Meter)
- **Φ** Angle of Repose of Soil (Degree)

Constants, Functions, Measurements used

- Function: cot, cot(Angle) Trigonometric cotangent function
- Function: **sin**, sin(Angle) *Trigonometric sine function*
- Function: **sqrt**, sqrt(Number) Square root function
- Measurement: Length in Meter (m), Millimeter (mm) Length Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion
- Measurement: Stress in Kilonewton per Square Meter (kN/m²) Stress Unit Conversion

Check other formula lists Canal Design Formulas Dams and Reservoirs Formulas Water Requirements of Crops and Canal Irrigation Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/20/2024 | 2:23:09 AM UTC

Please leave your feedback here ...