
calculatoratoz.com

()

unitsconverters.com

Geometric Design of Railway Track Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 22 Geometric Design of Railway Track Formulas

Geometric Design of Railway Track ©

1) Cant Deficiency for given Maximum Theoretical Cant $工$
$f x D_{\text {Cant }}=\mathrm{e}_{\text {Thmax }}-\mathrm{e}_{\mathrm{Eqmax}}$

Open Calculator
ex $5 \mathrm{~cm}=15 \mathrm{~cm}-10 \mathrm{~cm}$
2) Cant Deficiency for given Theoretical Cant \longleftarrow
$f \mathrm{f} \mathrm{D}_{\text {Cant }}=\mathrm{e}_{\mathrm{th}}-\mathrm{e}_{\mathrm{Cant}}$
ex $5 \mathrm{~cm}=16.25 \mathrm{~cm}-11.25 \mathrm{~cm}$
3) Degree of Curve in Railways
$f x D_{c}=\left(\frac{1720}{R}\right) \cdot\left(\frac{\pi}{180}\right)$
Open Calculator
$\operatorname{ex} 5^{\circ}=\left(\frac{1720}{344 \mathrm{~m}}\right) \cdot\left(\frac{\pi}{180}\right)$
4) Equilibrium Cant for BG

$$
\begin{aligned}
& f \mathrm{x} \mathrm{e}_{\mathrm{bg}}=1.676 \cdot \frac{\mathrm{~V}^{2}}{127 \cdot \mathrm{R}} \\
& \mathrm{ex} 0.251699 \mathrm{~m}=1.676 \cdot \frac{(81 \mathrm{~km} / \mathrm{h})^{2}}{127 \cdot 344 \mathrm{~m}}
\end{aligned}
$$

5) Equilibrium Cant for MG
$\mathrm{fx} \mathrm{e}_{\mathrm{mg}}=1.000 \cdot \frac{\mathrm{~V}^{2}}{127 \cdot \mathrm{R}}$

$$
\text { ex } 0.150179 \mathrm{~m}=1.000 \cdot \frac{(81 \mathrm{~km} / \mathrm{h})^{2}}{127 \cdot 344 \mathrm{~m}}
$$

6) Equilibrium Cant for NG
$\mathrm{fx}_{\mathrm{x}} \mathrm{e}_{\mathrm{ng}}=0.762 \cdot \frac{\mathrm{~V}^{2}}{127 \cdot \mathrm{R}}$
ex $0.114436 \mathrm{~m}=0.762 \cdot \frac{(81 \mathrm{~km} / \mathrm{h})^{2}}{127 \cdot 344 \mathrm{~m}}$
7) Equilibrium Cant in Railways $\boxed{\Omega}$

$$
f \mathrm{x} \mathrm{e}_{\mathrm{eq}}=\mathrm{G} \cdot \frac{\mathrm{~V}^{2}}{127 \cdot \mathrm{R}}
$$

ex $0.240286 \mathrm{~m}=1.6 \mathrm{~m} \cdot \frac{(81 \mathrm{~km} / \mathrm{h})^{2}}{127 \cdot 344 \mathrm{~m}}$
8) Maximum Theoretical Cant in Railways
$\mathrm{fx} \mathrm{e}_{\text {Thmax }}=\mathrm{e}_{\mathrm{Eqmax}}+\mathrm{D}_{\mathrm{Cant}}$
ex $15 \mathrm{~cm}=10 \mathrm{~cm}+5 \mathrm{~cm}$
9) Radius for given Degree of Curve in Railways
$\mathrm{fx} \mathrm{R}=\left(\frac{1720}{\mathrm{D}_{\mathrm{c}}}\right) \cdot\left(\frac{\pi}{180}\right)$
ex $337.2549 \mathrm{~m}=\left(\frac{1720}{5.1^{\circ}}\right) \cdot\left(\frac{\pi}{180}\right)$
10) Shift in Railways for Cubic Parabola

凹

$\mathrm{fx} \mathrm{S}=\frac{\mathrm{L}^{2}}{24 \cdot \mathrm{R}}$
Open Calculator
ex $2.046996 \mathrm{~m}=\frac{(130 \mathrm{~m})^{2}}{24 \cdot 344 \mathrm{~m}}$
11) Theoretical Cant in Railways
$f \mathrm{f} \mathrm{e}_{\text {th }}=\mathrm{e}_{\text {Cant }}+\mathrm{D}_{\text {Cant }}$
ex $16.25 \mathrm{~cm}=11.25 \mathrm{~cm}+5 \mathrm{~cm}$
12) Weighted Average of Different Trains at Different Speeds
$\mathbf{f x} \mathrm{W}_{\mathrm{Avg}}=\frac{\mathrm{n}_{1} \cdot \mathrm{~V}_{1}+\mathrm{n}_{2} \cdot \mathrm{~V}_{2}+\mathrm{n}_{3} \cdot \mathrm{~V}_{3}+\mathrm{n}_{4} \cdot \mathrm{~V}_{4}}{\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\mathrm{n}_{4}}$
Open Calculator
ex
$58.88889 \mathrm{~km} / \mathrm{h}=\frac{16 \cdot 50 \mathrm{~km} / \mathrm{h}+11 \cdot 60 \mathrm{~km} / \mathrm{h}+6 \cdot 70 \mathrm{~km} / \mathrm{h}+3 \cdot 80 \mathrm{~km} / \mathrm{h}}{16+11+6+3}$

Transition Curve

13) Length of Transition Curve as per Railway Code
$f \mathrm{x} \mathrm{L}_{\mathrm{RC}}=4.4 \cdot \mathrm{R}^{0.5}$
Open Calculator
ex $81.60784 \mathrm{~m}=4.4 \cdot(344 \mathrm{~m})^{0.5}$
14) Length of Transition Curve based on Arbitrary Gradient
$f_{x} L_{A G}=7.20 \cdot e_{V \max } \cdot 100$
Open Calculator ©
ex $86.4 \mathrm{~m}=7.20 \cdot 12 \mathrm{~cm} \cdot 100$
15) Length of Transition Curve based on rate of change of Cant Deficiency

E
fx $\mathrm{L}_{\mathrm{CD}}=0.073 \cdot \mathrm{D}_{\text {Cant }} \cdot \mathrm{V}_{\text {Max }} \cdot 100$
ex $31.025 \mathrm{~m}=0.073 \cdot 5 \mathrm{~cm} \cdot 85 \mathrm{~km} / \mathrm{h} \cdot 100$

Geometric Design of Railway Track Formulas...
16) Length of Transition Curve based on Rate of change of Super Elevation
$f x L_{\text {SE }}=0.073 \cdot \mathrm{e}_{\mathrm{Vmax}} \cdot \mathrm{V}_{\text {Max }} \cdot 100$
ex $74.46 \mathrm{~m}=0.073 \cdot 12 \mathrm{~cm} \cdot 85 \mathrm{~km} / \mathrm{h} \cdot 100$
17) Radius of Transition Curve for BG or MG
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{R}}=\left(\frac{\mathrm{V}_{\mathrm{bg} / \mathrm{mg}}}{4.4}\right)^{2}+70$
Open Calculator
ex $152.6446 \mathrm{~m}=\left(\frac{40 \mathrm{~km} / \mathrm{h}}{4.4}\right)^{2}+70$
18) Radius of Transition Curve for NG
$f \mathrm{fx} \mathrm{R}_{\mathrm{t}}=\left(\frac{\mathrm{V}_{\mathrm{ng}}}{3.65}\right)^{2}+6$
ex $151.3181 \mathrm{~m}=\left(\frac{44 \mathrm{~km} / \mathrm{h}}{3.65}\right)^{2}+6$
19) Safe Speed on Transitioned Curves for BG or MG
$f \mathrm{f} \quad \mathrm{V}_{\mathrm{bg} / \mathrm{mg}}=4.4 \cdot 0.278 \cdot\left(\mathrm{R}_{\mathrm{t}}-70\right)^{0.5}$
Open Calculator
ex $39.87557 \mathrm{~km} / \mathrm{h}=4.4 \cdot 0.278 \cdot(152 \mathrm{~m}-70)^{0.5}$
20) Safe Speed on Transitioned Curves for NG
$f_{\mathrm{x}} \mathrm{V}_{\mathrm{ng}}=3.65 \cdot 0.278 \cdot\left(\mathrm{R}_{\mathrm{t}}-6\right)^{0.5}$
Open Calculator 〔
ex $44.1384 \mathrm{~km} / \mathrm{h}=3.65 \cdot 0.278 \cdot(152 \mathrm{~m}-6)^{0.5}$
21) Speeds from Length of Transition Curves for High Speeds
$f_{x} V_{\text {High }}=198 \cdot \frac{L}{e \cdot 1000}$
ex $321.75 \mathrm{~km} / \mathrm{h}=198 \cdot \frac{130 \mathrm{~m}}{0.08 \mathrm{~m} \cdot 1000}$
22) Speeds from Length of Transition Curves for Normal Speeds
$f_{\mathrm{x}} \mathrm{V}_{\text {Normal }}=134$.

$$
\overline{\mathrm{e} \cdot 1000}
$$

$217.75 \mathrm{~km} / \mathrm{h}=134 \cdot \frac{130 \mathrm{~m}}{0.08 \mathrm{~m} \cdot 1000}$

Variables Used

- $\mathbf{D}_{\mathbf{c}}$ Degree of Curve for Railways (Degree)
- DCant Cant Deficiency (Centimeter)
- e Super Elevation for Transition Curve (Meter)
- $\mathbf{e}_{\text {bg }}$ Equilibrium Cant for Broad Gauge (Meter)
- $\mathbf{e}_{\text {Cant }}$ Equilibrium Cant (Centimeter)
- $\mathbf{e}_{\text {eq }}$ Equilibrium Cant in Railways (Meter)
- $\mathbf{e E q m a x}$ Maximum Equilibrium Cant (Centimeter)
- $\mathbf{e}_{\mathbf{m g}}$ Equilibrium Cant for Meter Gauge (Meter)
- \mathbf{e}_{ng} Equilibrium Cant for Narrow Gauge (Meter)
- $\mathbf{e}_{\text {th }}$ Theoretical Cant (Centimeter)
- $\mathbf{e}_{\text {Thmax }}$ Maximum Theoretical Cant (Centimeter)
- $\mathbf{e}_{\text {Vmax }}$ Equilibrium Cant for Max Speed (Centimeter)
- G Gauge of Track (Meter)
- L Length of Transition Curve in meters (Meter)
- $L_{\text {AG }}$ Length of Curve based on Arbitrary Gradient (Meter)
- $L_{C D}$ Length of Curve based on Cant Deficiency Rate (Meter)
- $L_{R C}$ Length of Curve based on Railway Code (Meter)
- LSE Length of Curve based on Change of superelevation (Meter)
- n_{1} Number of Trains with Speed 1
- $\mathbf{n}_{\mathbf{2}}$ Number of Trains with Speed 2
- \mathbf{n}_{3} Number of Trains with Speed 3
- $\mathbf{n}_{\mathbf{4}}$ Number of Trains with Speed 4
- R Radius of Curve (Meter)
- $\mathbf{R}_{\mathbf{t}}$ Radius of Transition Curve (Meter)
- S Shift in Railways in Cubic parabola (Meter)
- V Speed of Vehicle on Track (Kilometer per Hour)
- \mathbf{V}_{1} Speed of Trains Moving with Same Speed 1 (Kilometer per Hour)
- \mathbf{V}_{2} Speed of Trains Moving with Same Speed 2 (Kilometer per Hour)
- \mathbf{V}_{3} Speed of Trains Moving with Same Speed 3 (Kilometer per Hour)
- \mathbf{V}_{4} Speed of Trains Moving with Same Speed 4 (Kilometer per Hour)
- $\mathbf{V}_{\mathbf{b g} / \mathbf{m g}}$ Safe Speed on Transitioned Curves for B.G/M.G (Kilometer per Hour)
- $\mathbf{V}_{\text {High }}$ Speeds from Length of Curve for High Speeds (Kilometer per Hour)
- $\mathbf{V}_{\text {Max }}$ Maximum Speed of Train on Curve (Kilometer per Hour)
- $\mathbf{V}_{\mathbf{n g}}$ Safe Speed on Transitioned Curves for N.G (Kilometer per Hour)
- $\mathbf{V}_{\text {Normal }}$ Speeds from Length of Curve for Normal Speeds (Kilometer per Hour)
- $\mathbf{W}_{\text {Avg }}$ Weighted Average Speed (Kilometer per Hour)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Measurement: Length in Centimeter (cm), Meter (m) Length Unit Conversion
- Measurement: Speed in Kilometer per Hour (km/h) Speed Unit Conversion
- Measurement: Angle in Degree $\left({ }^{\circ}\right)$ Angle Unit Conversion

Check other formula lists

- Geometric Design of Railway Track• Rail Joints, Welding of Rails and Formulas
- Materials Required per km of Railway track Formulas
- Points and Crossings Formulas
- Track and Track Stresses Formulas
Traction and Tractive Resistances Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/5/2023 | 2:30:31 PM UTC Please leave your feedback here...

