
calculatoratoz.com

unitsconverters.com

Adjustment Factors for Design Values Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Adjustment Factors for Design Values Formulas

Adjustment Factors for Design Values ©

1) Adjusted Design Value for Compression Parallel to Grain

$$
f x F^{\prime}=\left(F_{c} \cdot C_{D} \cdot C_{m} \cdot C_{t} \cdot C_{F} \cdot C_{p}\right)
$$

Open Calculator
ex $5.66433 \mathrm{MPa}=(7.5 \mathrm{MPa} \cdot 0.74 \cdot 0.81 \cdot 0.8 \cdot 1.05 \cdot 1.5)$
2) Adjusted Design Value for Compression Perpendicular to Grain
$\mathrm{fx} \mathrm{F}^{\prime}=\mathrm{F}_{\mathrm{c} \perp} \cdot \mathrm{C}_{\mathrm{m}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{b}}$
Open Calculator
ex $5.87574 \mathrm{MPa}=9 \mathrm{MPa} \cdot 0.81 \cdot 0.8 \cdot 1.0075$
3) Adjusted Design Value for End Grain in Bearing Parallel to Grain
$f x F^{\prime}=F_{g} \cdot C_{D} \cdot C_{t}$
Open Calculator ©
ex $10.064 \mathrm{MPa}=17 \mathrm{MPa} \cdot 0.74 \cdot 0.8$
4) Adjusted Design Value for Shear
$f x F^{\prime}=F_{v} \cdot C_{D} \cdot C_{m} \cdot C_{t} \cdot C_{H}$
Open Calculator
ex $9.35064 \mathrm{MPa}=30 \mathrm{MPa} \cdot 0.74 \cdot 0.81 \cdot 0.8 \cdot 0.65$
5) Adjusted Design Value for Tension
$f \mathrm{x} \mathrm{F}^{\prime}=\left(\mathrm{F}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{m}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{F}}\right)$
ex $8.408383 \mathrm{MPa}=(16.70 \mathrm{MPa} \cdot 0.74 \cdot 0.81 \cdot 0.8 \cdot 1.05)$
Bearing Area Factor
6) Bearing Area Factor
$f \mathrm{f} \mathrm{C}_{\mathrm{b}}=\left(\frac{\mathrm{l}_{\mathrm{b} 1}+0.375}{\mathrm{l}_{\mathrm{b} 1}}\right)$
Open Calculator
ex $1.0075=\left(\frac{50.0 \mathrm{~mm}+0.375}{50.0 \mathrm{~mm}}\right)$
7) Bearing Length given Bearing Area Factor
$f_{\mathrm{x}} \mathrm{l}_{\mathrm{b} 1}=\left(\frac{0.375}{\mathrm{C}_{\mathrm{b}}-1}\right)$
Open Calculator 〔
ex $50 \mathrm{~mm}=\left(\frac{0.375}{1.0075-1}\right)$

Column Stability and Buckling Stiffness Factor 〔

8) Buckling Stiffness Factor
$f \mathrm{x} \mathrm{C}_{\mathrm{T}}=1+\left(\frac{\mathrm{K}_{\mathrm{M}} \cdot \mathrm{L}_{\mathrm{e}}}{\mathrm{K}_{\mathrm{T}} \cdot \mathrm{E}}\right)$
Open Calculator
ex $97.81356=1+\left(\frac{1200 \cdot 2380 \mathrm{~mm}}{0.59 \cdot 50 \mathrm{MPa}}\right)$
9) Slenderness Ratio for Beams
$f \mathrm{fx} \mathrm{R}_{\mathrm{B}}=\sqrt{\frac{\mathrm{L}_{\mathrm{e}} \cdot \mathrm{d}}{(\mathrm{w})^{2}}}$
Open Calculator
ex $13.52799=\sqrt{\frac{2380 \mathrm{~mm} \cdot 200 \mathrm{~mm}}{(51 \mathrm{~mm})^{2}}}$

Radial Stresses and Curvature Factor

10) Bending Moment given Radial Stress in Member
$f \times M_{b}^{\prime}=\frac{2 \cdot \sigma_{r} \cdot R \cdot w \cdot d}{3}$
ex $800.0003 \mathrm{~N}^{*} \mathrm{~m}=\frac{2 \cdot 1.30719 \mathrm{MPa} \cdot 90 \mathrm{~mm} \cdot 51 \mathrm{~mm} \cdot 200 \mathrm{~mm}}{3}$
11) Cross Section Depth given Radial Stress in Member
$f \mathrm{x} d=\frac{3 \cdot M_{\mathrm{b}}^{\prime}}{2 \cdot \sigma_{\mathrm{r}} \cdot R \cdot \mathrm{w}}$
Open Calculator
ex $199.9999 \mathrm{~mm}=\frac{3 \cdot 800 \mathrm{~N}^{*} \mathrm{~m}}{2 \cdot 1.30719 \mathrm{MPa} \cdot 90 \mathrm{~mm} \cdot 51 \mathrm{~mm}}$
12) Cross Section Width given Radial Stress in Member
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{w}}=\frac{3 \cdot \mathrm{M}_{\mathrm{b}}}{2 \cdot \sigma_{\mathrm{r}} \cdot \mathrm{R} \cdot \mathrm{d}}$
Open Calculator
ex $50.99998 \mathrm{~mm}=\frac{3 \cdot 800 \mathrm{~N}^{*} \mathrm{~m}}{2 \cdot 1.30719 \mathrm{MPa} \cdot 90 \mathrm{~mm} \cdot 200 \mathrm{~mm}}$
13) Curvature Factor for Adjustment in Design Value for Curved Portions of Wood
$f_{x} C_{c}=1-\left(2000 \cdot\left(\frac{t}{R}\right)^{2}\right)$
Open Calculator
ex $0.8=1-\left(2000 \cdot\left(\frac{0.9 \mathrm{~mm}}{90 \mathrm{~mm}}\right)^{2}\right)$
14) Radial Stress Induced by Bending Moment in Member
$\mathrm{fx}_{\mathrm{x}} \sigma_{\mathrm{r}}=3 \cdot \frac{\mathrm{M}_{\mathrm{b}}}{2 \cdot \mathrm{R} \cdot \mathrm{w} \cdot \mathrm{d}}$
Open Calculator
ex $1.30719 \mathrm{MPa}=3 \cdot \frac{800 \mathrm{~N}^{*} \mathrm{~m}}{2 \cdot 90 \mathrm{~mm} \cdot 51 \mathrm{~mm} \cdot 200 \mathrm{~mm}}$
15) Radius of Curvature given Radial Stress in Member
$\mathrm{fx} \mathrm{R}=\frac{3 \cdot \mathrm{M}^{\prime}{ }_{\mathrm{b}}}{2 \cdot \sigma_{\mathrm{r}} \cdot \mathrm{w} \cdot \mathrm{d}}$
Open Calculator
ex $89.99997 \mathrm{~mm}=\frac{3 \cdot 800 \mathrm{~N}^{*} \mathrm{~m}}{2 \cdot 1.30719 \mathrm{MPa} \cdot 51 \mathrm{~mm} \cdot 200 \mathrm{~mm}}$
16) Size Factor for Adjustment in Design Value for Bending
$f \mathrm{f} \mathrm{C}_{\mathrm{F}}=\left(\frac{12}{\mathrm{~d}}\right)^{\frac{1}{9}}$
Open Calculator
ex $1.047929=\left(\frac{12}{200 \mathrm{~mm}}\right)^{\frac{1}{9}}$

Variables Used

- \mathbf{C}_{b} Bearing Area Factor
- C_{c} Curvature Factor
- C_{D} Load Duration Factor
- \mathbf{C}_{F} Size Factor
- \mathbf{C}_{H} Shear Stress Factor
- $\mathbf{C}_{\mathbf{m}}$ Wet Service Factor
- $\mathbf{C}_{\mathbf{p}}$ Column Stability Factor
- C_{t} Temperature Factor
- C_{T} Buckling Stiffness Factor
- d Depth of Cross Section (Millimeter)
- E Modulus of Elasticity (Megapascal)
- F' Adjusted Design Value (Megapascal)
- $F_{\mathbf{c}}$ Design Value for Parallel Compression (Megapascal)
- $\mathbf{F}_{\mathbf{c} \perp}$ Design Value for Compression Perpendicular (Megapascal)
- $\mathbf{F}_{\mathbf{g}}$ Design Value for Bearing (Megapascal)
- F_{t} Design Value for Tension (Megapascal)
- $\mathbf{F}_{\mathbf{v}}$ Design Value for Shear (Megapascal)
- $\mathbf{K}_{\mathbf{M}}$ Stiffness Factor for Wood
- K_{T} Stiffness Factor for Lumber
- $\mathbf{I}_{\mathbf{b} 1}$ Length of Bearing (Millimeter)
- L_{e} Effective Length (Millimeter)
- $\mathbf{M}_{\mathbf{b}}{ }_{\mathbf{b}}$ Bending Moment for Radial Stress (Newton Meter)
- R Radius of Curvature at Centerline of Member (Millimeter)
- R_{B} Slenderness Ratio
- t Lamination Thickness (Millimeter)
- w Width of Cross Section (Millimeter)
- σ_{r} Radial Stress (Megapascal)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Pressure in Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Moment of Force in Newton Meter (N*m)

Moment of Force Unit Conversion

- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion

Check other formula lists

- Adjustment Factors for Design Values Formulas
- Adjustment of Design Values for Connections with Fasteners Formulas
- Fasteners for Wood Formulas
- Laboratory Recommendations, Roof Slope and Oblique Plane

Formulas 〔

- Solid Rectangular or Square Columns with Flat Ends Formulas
- Timber Beams and Columns Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

