

Circular Curves on Highways and Roads Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 27 Circular Curves on Highways and Roads Formulas

Circular Curves on Highways and Roads 🕑

2) Central angle for Portion of Curve Approximate for Chord definition

3) Central Angle for Portion of Curve Exact for Arc definition

Open Calculator

4) Central Angle of Curve for given Length of Curve 🗹

Open Calculator

Open Calculator

Open Calculator 🕑

11) Exact Tangent Distance 🗹

fx
$$T = R_c \cdot tan\left(rac{1}{2}
ight) \cdot I$$

$$49.58084\mathrm{m} = 130\mathrm{m} \cdot \mathrm{tan}\left(\frac{1}{2}\right) \cdot 40^{\circ}$$

12) External Distance 🕑

fx
$$\mathbf{E} = \mathbf{R}_{\mathrm{c}} \cdot \left(\left(\sec\left(\frac{1}{2}\right) \cdot \mathbf{I} \cdot \left(\frac{180}{\pi}\right) \right) - 1 \right)$$

$$5795.368 \text{m} = 130 \text{m} \cdot \left(\left(\sec\left(\frac{1}{2}\right) \cdot 40^{\circ} \cdot \left(\frac{180}{\pi}\right) \right) - 1 \right)$$

13) Length of Curve given Central Angle for portion of Curve

fx
$$L_c = \frac{d \cdot 100}{D}$$

ex $150m = \frac{90^{\circ} \cdot 100}{60^{\circ}}$

14) Length of Curve or Chord by Central Angle given Central Angle for Portion of Curve

15) Length of Curve or Chord by Central Angle given Tangent Offset for Chord of Length

Open Calculator 🕑

ex
$$139.6424 \mathrm{m} = \sqrt{75 \mathrm{m} \cdot 2 \cdot 130 \mathrm{m}}$$

fx $L_c = \sqrt{a \cdot 2 \cdot R_c}$

16) Length of Curve or Chord determined by Central Angle given Chord Offset for Chord of Length

$$\mathbf{k} \quad \mathbf{L}_{c} = \sqrt{\mathbf{b} \cdot \mathbf{R}_{c}}$$
Open Calculator **C**

$$\mathbf{k} \quad \mathbf{L}_{c} = \sqrt{\mathbf{b} \cdot \mathbf{R}_{c}}$$

$$\mathbf{k} \quad \mathbf{139.9679m} = \sqrt{150.7m \cdot 130m}$$
17) Length of Long Chord

$$\mathbf{k} \quad \mathbf{C} = 2 \cdot \mathbf{R}_{c} \cdot \sin\left(\left(\frac{1}{2}\right) \cdot (\mathbf{I})\right)$$
Open Calculator **C**

$$\mathbf{k} \quad \mathbf{R}_{c} = 2 \cdot 130m \cdot \sin\left(\left(\frac{1}{2}\right) \cdot (40^{\circ})\right)$$
18) Radius of Curve

$$\mathbf{k} \quad \mathbf{R}_{c} = \frac{5729.578}{\mathbf{D} \cdot \left(\frac{180}{\pi}\right)}$$
Open Calculator **C**

$$\mathbf{k} \quad \mathbf{R}_{c} = \frac{5729.578}{\mathbf{D} \cdot \left(\frac{180}{\pi}\right)}$$

 $\overline{60}^{\circ} \cdot \left(\frac{180}{\pi}\right)$

19) Radius of Curve Exact for Chord 🕑

fx
$$R_c = \frac{50}{\sin(\frac{1}{2}) \cdot (D)}$$

ex $99.59103m = \frac{50}{\sin(\frac{1}{2}) \cdot (60^\circ)}$

20) Radius of Curve given Chord offset for Chord of Length

fx
$$R_c = \frac{L_c^2}{b}$$

ex $130.0597m = \frac{(140m)^2}{150.7m}$

21) Radius of Curve given Length of Long Chord 🕑

fx
$$\mathbf{R}_{c} = \frac{\mathbf{C}}{2 \cdot \sin\left(\frac{1}{2}\right) \cdot (\mathbf{I})}$$

ex $150.8804 \mathrm{m} = \frac{101 \mathrm{m}}{2 \cdot \sin\left(\frac{1}{2}\right) \cdot (40^{\circ})}$

Open Calculator 🕑

22) Radius of Curve given Tangent offset for Chord of Length

$$\begin{array}{l} & \mbox{Open Calculator} \textcircled{\sc c} \\ \hline \mbox{R}_c = \frac{L_c^2}{2 \cdot a} \\ \hline \mbox{ex} \ 130.6667m = \frac{(140m)^2}{2 \cdot 75m} \\ \hline \mbox{ex} \ 130.6667m = \frac{(140m)^2}{2 \cdot 75m} \\ \hline \mbox{ex} \ 130.6667m = \frac{(140m)^2}{2 \cdot 75m} \\ \hline \mbox{ex} \ \mbox{calculator} \ \mbox{ex} \\ \hline \mbox{ex} \ \mbox{R}_c = \frac{50}{\sin\left(\frac{1}{2}\right) \cdot (D)} \\ \hline \mbox{ex} \ \mbox{ex} \ \mbox{ex} \\ \hline \mbox{ex} \ \mbox{ex} \\ \hline \mbox{ex} \ \mbox{ex} \\ \hline \mbox{ex} \ \mbox{ex} \ \mbox{ex} \\ \hline \mbox{ex} \ \mbox{ex} \ \mbox{ex} \\ \hline \mbox{ex} \ \mbox{ex} \\ \hline \mbox{ex} \ \mbox{ex} \ \mbox{ex} \ \mbox{ex} \\ \hline \mbox{ex} \ \mbox{ex} \ \mbox{ex} \\ \hline \mbox{ex} \ \mbox{ex} \ \mbox{ex} \ \mbox{ex} \ \mbox{ex} \\ \hline \mbox{ex} \ \mbox{ex} \ \mbox{ex} \ \mbox{ex} \\ \hline \mbox{ex} \ \mbox{e$$

ex
$$75.38462 \mathrm{m} = rac{(140 \mathrm{m})^2}{2 \cdot 130 \mathrm{m}}$$

Variables Used

- a Tangent Offset (Meter)
- **b** Chord Offset (Meter)
- C Length of long Chord (Meter)
- d Central Angle for Portion of Curve (Degree)
- D Degree of Curve (Degree)
- E External Distance (Meter)
- I Central Angle of Curve (Degree)
- L_c Length of Curve (Meter)
- **M** Midordinate (Meter)
- R_c Radius of Circular Curve (Meter)
- **T** Tangent Distance (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: cos, cos(Angle) Trigonometric cosine function
- Function: sec, sec(Angle) Trigonometric secant function
- Function: **sin**, sin(Angle) *Trigonometric sine function*
- Function: **sqrt**, sqrt(Number) Square root function
- Function: tan, tan(Angle) Trigonometric tangent function
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion

Check other formula lists

 Circular Curves on Highways and Roads Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/20/2023 | 4:35:36 AM UTC

Please leave your feedback here ...

