
calculatoratoz.com

unitsconverters.com

Circular Curves on Highways and Roads Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 27 Circular Curves on Highways and Roads Formulas

Circular Curves on Highways and Roads ©

1) Approximate Chord Offset for Chord of Length
$f \mathrm{x}=\frac{L_{\mathrm{c}}^{2}}{\mathrm{R}_{\mathrm{c}}}$
Open Calculator
ex $150.7692 \mathrm{~m}=\frac{(140 \mathrm{~m})^{2}}{130 \mathrm{~m}}$
2) Central angle for Portion of Curve Approximate for Chord definition
$f \mathbf{x} \mathrm{~d}=\frac{\mathrm{D} \cdot \mathrm{L}_{\mathrm{c}}}{100}$
Open Calculator
ex $84^{\circ}=\frac{60^{\circ} \cdot 140 \mathrm{~m}}{100}$
3) Central Angle for Portion of Curve Exact for Arc definition
$f \mathrm{f} d=\frac{\mathrm{D} \cdot \mathrm{L}_{\mathrm{c}}}{100}$
ex $84^{\circ}=\frac{60^{\circ} \cdot 140 \mathrm{~m}}{100}$
4) Central Angle of Curve for given Length of Curve
$\mathrm{f}_{\mathrm{x}} \mathrm{I}=\frac{\mathrm{L}_{\mathrm{c}} \cdot \mathrm{D}}{100}$
Open Calculator
$\operatorname{ex} 84^{\circ}=\frac{140 \mathrm{~m} \cdot 60^{\circ}}{100}$
5) Central Angle of Curve for given Length of Long Chord

ex $46.42474^{\circ}=\left(\frac{101 \mathrm{~m}}{2 \cdot 130 \mathrm{~m} \cdot \sin \left(\frac{1}{2}\right)}\right)$
6) Central Angle of Curve for given Tangent Distance
$f \mathrm{fx}=\left(\frac{\mathrm{T}}{\sin \left(\frac{1}{2}\right) \cdot R_{c}}\right)$
ex $45.57898^{\circ}=\left(\frac{49.58 \mathrm{~m}}{\sin \left(\frac{1}{2}\right) \cdot 130 \mathrm{~m}}\right)$

Circular Curves on Highways and Roads Formulas...
7) Degree of Curve for given Length of Curve $\sqrt{ }$
$f \mathrm{f} D=\frac{100 \cdot \mathrm{I}}{\mathrm{L}_{\mathrm{c}}}$
ex $28.57143^{\circ}=\frac{100 \cdot 40^{\circ}}{140 \mathrm{~m}}$

Open Calculator

8) Degree of Curve for given Radius of Curve $\boxed{\Omega}$
$f \times D=\left(\frac{5729.578}{R_{c}}\right) \cdot\left(\frac{\pi}{180}\right)$
Open Calculator
ex $44.07368^{\circ}=\left(\frac{5729.578}{130 \mathrm{~m}}\right) \cdot\left(\frac{\pi}{180}\right)$
9) Degree of Curve when Central Angle for Portion of Curve
f. $\mathrm{D}=\frac{100 \cdot \mathrm{~d}}{\mathrm{~L}_{\mathrm{c}}}$

Open Calculator
ex $64.28571^{\circ}=\frac{100 \cdot 90^{\circ}}{140 \mathrm{~m}}$
10) Exact Length of Curve
$f \mathbf{x} L_{c}=\frac{100 \cdot I}{D}$
ex $66.66667 \mathrm{~m}=\frac{100 \cdot 40^{\circ}}{60^{\circ}}$

Circular Curves on Highways and Roads Formulas...
11) Exact Tangent Distance
$\mathrm{fx}_{\mathrm{x}} \mathrm{T}=\mathrm{R}_{\mathrm{c}} \cdot \tan \left(\frac{1}{2}\right) \cdot \mathrm{I}$
Open Calculator
ex $49.58084 \mathrm{~m}=130 \mathrm{~m} \cdot \tan \left(\frac{1}{2}\right) \cdot 40^{\circ}$
12) External Distance
$f x \mathrm{E}=\mathrm{R}_{\mathrm{c}} \cdot\left(\left(\sec \left(\frac{1}{2}\right) \cdot \mathrm{I} \cdot\left(\frac{180}{\pi}\right)\right)-1\right)$
Open Calculator
ex $5795.368 \mathrm{~m}=130 \mathrm{~m} \cdot\left(\left(\sec \left(\frac{1}{2}\right) \cdot 40^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)-1\right)$
13) Length of Curve given Central Angle for portion of Curve
$f \mathrm{f} \mathrm{L}_{\mathrm{c}}=\frac{\mathrm{d} \cdot 100}{\mathrm{D}}$
Open Calculator
ex $150 \mathrm{~m}=\frac{90^{\circ} \cdot 100}{60^{\circ}}$
14) Length of Curve or Chord by Central Angle given Central Angle for Portion of Curve
f. $L_{c}=\frac{100 \cdot d}{D}$
ex $150 \mathrm{~m}=\frac{100 \cdot 90^{\circ}}{60^{\circ}}$

Circular Curves on Highways and Roads Formulas...
15) Length of Curve or Chord by Central Angle given Tangent Offset for Chord of Length
$f \mathrm{x} \mathrm{L}_{\mathrm{c}}=\sqrt{\mathrm{a} \cdot 2 \cdot \mathrm{R}_{\mathrm{c}}}$
Open Calculator
ex $139.6424 \mathrm{~m}=\sqrt{75 \mathrm{~m} \cdot 2 \cdot 130 \mathrm{~m}}$
16) Length of Curve or Chord determined by Central Angle given Chord Offset for Chord of Length
$f \mathbf{f} L_{c}=\sqrt{b \cdot R_{c}}$
Open Calculator
ex $139.9679 \mathrm{~m}=\sqrt{150.7 \mathrm{~m} \cdot 130 \mathrm{~m}}$
17) Length of Long Chord
$f \mathrm{f} \mathrm{C}=2 \cdot \mathrm{R}_{\mathrm{c}} \cdot \sin \left(\left(\frac{1}{2}\right) \cdot(\mathrm{I})\right)$
Open Calculator
ex $88.92524 \mathrm{~m}=2 \cdot 130 \mathrm{~m} \cdot \sin \left(\left(\frac{1}{2}\right) \cdot\left(40^{\circ}\right)\right)$
18) Radius of Curve
$f \mathrm{fx} \mathrm{R}_{\mathrm{c}}=\frac{5729.578}{\mathrm{D} \cdot\left(\frac{180}{\pi}\right)}$
Open Calculator
ex $95.49297 \mathrm{~m}=\frac{5729.578}{60^{\circ} \cdot\left(\frac{180}{\pi}\right)}$
19) Radius of Curve Exact for Chord

$$
f \mathrm{x} \mathrm{R}_{\mathrm{c}}=\frac{50}{\sin \left(\frac{1}{2}\right) \cdot(\mathrm{D})}
$$

ex $99.59103 \mathrm{~m}=\frac{50}{\sin \left(\frac{1}{2}\right) \cdot\left(60^{\circ}\right)}$
20) Radius of Curve given Chord offset for Chord of Length
$f \times R_{c}=\frac{L_{c}^{2}}{b}$
ex $130.0597 \mathrm{~m}=\frac{(140 \mathrm{~m})^{2}}{150.7 \mathrm{~m}}$
21) Radius of Curve given Length of Long Chord
$\mathrm{fx}_{\mathrm{x}} \mathrm{R}_{\mathrm{c}}=\frac{\mathrm{C}}{2 \cdot \sin \left(\frac{1}{2}\right) \cdot(\mathrm{I})}$
$\operatorname{ex} 150.8804 \mathrm{~m}=\frac{101 \mathrm{~m}}{2 \cdot \sin \left(\frac{1}{2}\right) \cdot\left(40^{\circ}\right)}$

Circular Curves on Highways and Roads Formulas．．．
22）Radius of Curve given Tangent offset for Chord of Length
$\mathrm{fx}_{\mathrm{x}}=\frac{\mathrm{L}_{\mathrm{c}}^{2}}{2 \cdot \mathrm{a}}$
ex $130.6667 \mathrm{~m}=\frac{(140 \mathrm{~m})^{2}}{2 \cdot 75 \mathrm{~m}}$
23）Radius of Curve using Degree of Curve $工$
$f \mathrm{x} \mathrm{R}_{\mathrm{c}}=\frac{50}{\sin \left(\frac{1}{2}\right) \cdot(\mathrm{D})}$
ex $99.59103 \mathrm{~m}=\frac{50}{\sin \left(\frac{1}{2}\right) \cdot\left(60^{\circ}\right)}$
24）Radius of Curve using External Distance

$$
f_{\mathrm{x}} \mathrm{R}_{\mathrm{c}}=\frac{\mathrm{E}}{\left(\sec \left(\frac{1}{2}\right) \cdot\left(\mathrm{I} \cdot\left(\frac{180}{\pi}\right)\right)\right)-1}
$$

ex $129.9917 \mathrm{~m}=\frac{5795 \mathrm{~m}}{}$

$$
\left(\sec \left(\frac{1}{2}\right) \cdot\left(40^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)\right)-1
$$

$f_{\mathbf{x}} R_{c}=\frac{\mathrm{E}}{\left(\sec \left(\frac{1}{2}\right) \cdot\left(\mathrm{I} \cdot\left(\frac{180}{\pi}\right)\right)\right)-1}$
$\mathbf{e x} 129.9917 \mathrm{~m}=\frac{5795 \mathrm{~m}}{\left(\sec \left(\frac{1}{2}\right) \cdot\left(40^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)\right)-1}$

Circular Curves on Highways and Roads Formulas...
25) Radius of Curve using Midordinate
$f \mathbf{x} \mathrm{R}_{\mathrm{c}}=\frac{\mathrm{M}}{1-\left(\cos \left(\frac{1}{2}\right) \cdot(\mathrm{I})\right)}$
ex $130.3792 \mathrm{~m}=\frac{50.5 \mathrm{~m}}{1-\left(\cos \left(\frac{1}{2}\right) \cdot\left(40^{\circ}\right)\right)}$
26) Radius of Curve using Tangent Distance
$f \mathbf{x} \mathrm{R}_{\mathrm{c}}=\frac{\mathrm{T}}{\sin \left(\frac{1}{2}\right) \cdot(\mathrm{I})}$
ex $148.1317 \mathrm{~m}=\frac{49.58 \mathrm{~m}}{\sin \left(\frac{1}{2}\right) \cdot\left(40^{\circ}\right)}$
27) Tangent Offset for Chord of Length
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{a}}=\frac{\mathrm{L}_{\mathrm{c}}^{2}}{2 \cdot \mathrm{R}_{\mathrm{c}}}$
Open Calculator
ex $75.38462 \mathrm{~m}=\frac{(140 \mathrm{~m})^{2}}{2 \cdot 130 \mathrm{~m}}$

Variables Used

- a Tangent Offset (Meter)
- b Chord Offset (Meter)
- C Length of long Chord (Meter)
- d Central Angle for Portion of Curve (Degree)
- D Degree of Curve (Degree)
- E External Distance (Meter)
- I Central Angle of Curve (Degree)
- L_{c} Length of Curve (Meter)
- M Midordinate (Meter)
- $\mathbf{R}_{\mathbf{c}}$ Radius of Circular Curve (Meter)
- T Tangent Distance (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: sec, sec(Angle)

Trigonometric secant function

- Function: sin, sin(Angle)

Trigonometric sine function

- Function: sqrt, sqrt(Number)

Square root function

- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

Check other formula lists

- Circular Curves on Highways and Roads Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

