
calculatoratoz.com

unitsconverters.com

Highway Geometric Design Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 32 Highway Geometric Design Formulas

Highway Geometric Design ©

Gradients \mathbb{C}

1) Camber given Gradient $\boxed{\square}$
$\mathrm{f} \times \mathrm{H}_{\mathrm{c}}=\frac{\mathrm{h}_{\text {Elevation }}}{2}$
Open Calculator
ex $1.5 \mathrm{~m}=\frac{3 \mathrm{~m}}{2}$
2) Distance from Center of Camber given Height for Parabolic Shape Camber
$f \mathrm{X} \mathrm{X}=\left(\frac{\mathrm{H}_{\mathrm{c}} \cdot\left(\mathrm{h}_{\text {Elevation }} \cdot \mathrm{B}\right)}{2}\right)^{0.5}$
ex $3.940178 \mathrm{~m}=\left(\frac{1.5 \mathrm{~m} \cdot(3 \mathrm{~m} \cdot 6.9 \mathrm{~m})}{2}\right)^{0.5}$
3) Grade Compensation formula 1 U
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{s}=\frac{30+\mathrm{R}_{\mathrm{c}}}{\mathrm{R}_{\mathrm{c}}}}$
ex $1.230769=\frac{30+130 \mathrm{~m}}{130 \mathrm{~m}}$
4) Grade Compensation formula 2
$f \mathrm{fx}=\frac{75}{\mathrm{R}_{\mathrm{c}}}$
Open Calculator
ex $0.576923=\frac{75}{130 \mathrm{~m}}$
5) Gradient given Camber
$f \times h_{\text {Elevation }}=2 \cdot \mathrm{H}_{\mathrm{c}}$
Open Calculator
ex $3 \mathrm{~m}=2 \cdot 1.5 \mathrm{~m}$
6) Gradient given Height for Parabolic Shape Camber
$f x h_{\text {Elevation }}=\frac{2 \cdot\left(\mathrm{X}^{2}\right)}{\mathrm{H}_{\mathrm{c}} \cdot \mathrm{B}}$
Open Calculator
ex $2.93913 \mathrm{~m}=\frac{2 \cdot\left((3.9 \mathrm{~m})^{2}\right)}{1.5 \mathrm{~m} \cdot 6.9 \mathrm{~m}}$
7) Height for Parabolic Shape Camber
$f \mathrm{fx} \mathrm{H}_{\mathrm{c}}=\frac{2 \cdot\left(\mathrm{X}^{2}\right)}{\mathrm{h}_{\text {Elevation }} \cdot \mathrm{B}}$
Open Calculator
ex $1.469565 \mathrm{~m}=\frac{2 \cdot\left((3.9 \mathrm{~m})^{2}\right)}{3 \mathrm{~m} \cdot 6.9 \mathrm{~m}}$
8) Height for Straight Line Camber
$f_{\mathrm{x}} \mathrm{H}_{\mathrm{c}}=\frac{\mathrm{B}}{\mathrm{h}_{\text {Elevation }} \cdot 2}$
Open Calculator
ex $1.15 \mathrm{~m}=\frac{6.9 \mathrm{~m}}{3 \mathrm{~m} \cdot 2}$
9) Radius of Road given Grade Compensation formula 1 工
$f x R_{c}=\frac{30}{s-1}$
ex $130.4348 \mathrm{~m}=\frac{30}{1.23-1}$
10) Radius of Road given Grade Compensation formula 2
$f \times R_{c}=\frac{75}{s}$

苚
11) Width of Road given Height for Parabolic Shape Camber
$f \mathrm{x} B=\frac{2 \cdot\left(\mathrm{X}^{2}\right)}{\mathrm{H}_{\mathrm{c}} \cdot \mathrm{h}_{\text {Elevation }}}$
Open Calculator
ex $6.76 \mathrm{~m}=\frac{2 \cdot\left((3.9 \mathrm{~m})^{2}\right)}{1.5 \mathrm{~m} \cdot 3 \mathrm{~m}}$
12) Width of Road given Height for Straight Line Camber
$\mathrm{f} \times \mathrm{B}=\mathrm{H}_{\mathrm{c}} \cdot\left(\mathrm{h}_{\text {Elevation }} \cdot 2\right)$
ex $9 \mathrm{~m}=1.5 \mathrm{~m} \cdot(3 \mathrm{~m} \cdot 2)$

Horizontal Curves ©

Extra Widening on Horizontal Curves

13) Psychological Widening on Horizontal Curves
$\mathrm{fx}_{\mathrm{x}} \mathrm{W}_{\mathrm{ps}}=\frac{\mathrm{v}}{9.5 \cdot\left(\mathrm{R}_{\mathrm{t}}\right)^{0.5}}$
Open Calculator
ex $0.303869 \mathrm{~m}=\frac{50 \mathrm{~km} / \mathrm{h}}{9.5 \cdot(300 \mathrm{~m})^{0.5}}$
14) Total Extra Widening required on Horizontal Curves
$\mathrm{fx}_{\mathrm{x}} \mathrm{W}_{\mathrm{e}}=\left(\frac{\mathrm{n} \cdot\left(\mathrm{l}^{2}\right)}{2 \cdot \mathrm{R}_{\mathrm{t}}}\right)+\left(\frac{\mathrm{v}}{9.5 \cdot\left(\mathrm{R}_{\mathrm{t}}^{0.5}\right)}\right)$
Open Calculator
$\mathrm{ex} 0.843869 \mathrm{~m}=\left(\frac{9 \cdot\left((6 \mathrm{~m})^{2}\right)}{2 \cdot 300 \mathrm{~m}}\right)+\left(\frac{50 \mathrm{~km} / \mathrm{h}}{9.5 \cdot\left((300 \mathrm{~m})^{0.5}\right)}\right)$
15) Total Extra Widening required on Horizontal Curves wrt Wm and Wps
$\mathrm{fx} \mathrm{W}_{\mathrm{e}}=\left(\mathrm{W}_{\mathrm{ps}}+\mathrm{W}_{\mathrm{m}}\right)$
Open Calculator
ex $0.89 \mathrm{~m}=(0.52 \mathrm{~m}+0.37 \mathrm{~m})$

Set Back Distance and curve Resistance

16) Set Back Distance by Approx Method (L is greater than S) \checkmark

$10.66667 \mathrm{~m}=\frac{(160 \mathrm{~m})^{2}}{8 \cdot 300 \mathrm{~m}}$
17) Set Back Distance by Approx Method (L is less than S)
$\mathrm{fx} \mathrm{m}=\frac{\mathrm{L}_{\mathrm{c}} \cdot\left(2 \cdot \mathrm{SSD}-\mathrm{L}_{\mathrm{c}}\right)}{8 \cdot \mathrm{R}_{\mathrm{t}}}$
$\mathrm{ex} 10.5 \mathrm{~m}=\frac{140 \mathrm{~m} \cdot(2 \cdot 160 \mathrm{~m}-140 \mathrm{~m})}{8 \cdot 300 \mathrm{~m}}$
18) Set Back Distance by Rational Method (L is greater than S) Single Lane U
$\mathrm{fx} \mathrm{m}=\mathrm{R}_{\mathrm{t}}-\mathrm{R}_{\mathrm{t}} \cdot \cos \left(\frac{\mathrm{SSD}}{2 \cdot \mathrm{R}_{\mathrm{t}}}\right)$
ex $10.60361 \mathrm{~m}=300 \mathrm{~m}-300 \mathrm{~m} \cdot \cos \left(\frac{160 \mathrm{~m}}{2 \cdot 300 \mathrm{~m}}\right)$

Summit Curve ©

19) Length of Summit Curve for Stopping Sight Distance when Curve Length is less than SSD
fx
$\mathrm{L}_{\mathrm{Sc}}=2 \cdot \operatorname{SSD}-\left(\frac{\left((2 \cdot \mathrm{H})^{0.5}+(2 \cdot \mathrm{~h})^{0.5}\right)^{2}}{\mathrm{~N}}\right)$
ex $265.0368 \mathrm{~m}=2 \cdot 160 \mathrm{~m}-\left(\frac{\left((2 \cdot 1.2 \mathrm{~m})^{0.5}+(2 \cdot 0.15 \mathrm{~m})^{0.5}\right)^{2}}{0.08}\right)$
20) Length of Summit Curve for Stopping Sight Distance when Curve Length is more than SSD
$f \mathrm{fx} \mathrm{L}_{\mathrm{Sc}}=\frac{\mathrm{N} \cdot \mathrm{SSD}^{2}}{\left((2 \cdot \mathrm{H})^{0.5}+(2 \cdot \mathrm{~h})^{0.5}\right)^{2}}$
$\mathrm{ex} 465.7662 \mathrm{~m}=\frac{0.08 \cdot(160 \mathrm{~m})^{2}}{\left((2 \cdot 1.2 \mathrm{~m})^{0.5}+(2 \cdot 0.15 \mathrm{~m})^{0.5}\right)^{2}}$
21) Length of Summit Curve when Length of Curve is greater than OSD or ISD

$f_{\mathrm{x}} \mathrm{L}_{\mathrm{Sc}}=\frac{\mathrm{N} \cdot\left(\mathrm{SSD}^{2}\right)}{8 \cdot \mathrm{H}}$

ex $213.3333 \mathrm{~m}=\frac{0.08 \cdot\left((160 \mathrm{~m})^{2}\right)}{8 \cdot 1.2 \mathrm{~m}}$
22) Length of Summit Curve when Length of Curve is less than OSD or ISD
$f x L_{S c}=2 \cdot S S D-\left(\frac{8 \cdot H}{N}\right)$
Open Calculator
ex $200 \mathrm{~m}=2 \cdot 160 \mathrm{~m}-\left(\frac{8 \cdot 1.2 \mathrm{~m}}{0.08}\right)$

Transition Curve ©

23) Length of Transition Curve according to Rate of change of Centrifugal Acceleration
$f \mathrm{fx} \mathrm{L}_{\mathrm{s}}=\frac{\mathrm{v}_{1}^{3}}{\mathrm{C} \cdot \mathrm{R}_{\mathrm{t}}}$
Open Calculator
ex $36.39259 \mathrm{~m}=\frac{(17 \mathrm{~m} / \mathrm{s})^{3}}{0.45 \mathrm{~m} / \mathrm{s}^{3} \cdot 300 \mathrm{~m}}$
24) Length of Transition Curve according to Rate of Introduction of Superelevation
$f \mathrm{x} \mathrm{L}_{\mathrm{e}}=\left(\frac{\mathrm{e} \cdot \mathrm{N}_{\text {Rate }}}{2}\right) \cdot\left(\mathrm{W}+\mathrm{W}_{\mathrm{ex}}\right)$
ex $562.1245 \mathrm{~m}=\left(\frac{0.07 \cdot 150.1}{2}\right) \cdot(7 \mathrm{~m}+100 \mathrm{~m})$
25) Length of Transition Curve by Empirical Formula for Mountainous and Steep Terrains
f. $\mathrm{L}_{\text {Slope }}=\frac{\mathrm{v}_{1}^{2}}{\mathrm{R}_{\mathrm{t}}}$

Open Calculator
ex $0.963333 \mathrm{~m}=\frac{(17 \mathrm{~m} / \mathrm{s})^{2}}{300 \mathrm{~m}}$
26) Length of Transition Curve by Empirical Formula for Plain and Rrolling Terrain
$f \mathrm{f} \mathrm{L}_{\text {Terrain }}=\frac{2.7 \cdot\left(\mathrm{v}_{1}\right)^{2}}{\mathrm{R}_{\mathrm{t}}}$
Open Calculator
ex $2.601 \mathrm{~m}=\frac{2.7 \cdot(17 \mathrm{~m} / \mathrm{s})^{2}}{300 \mathrm{~m}}$
27) Length of Transition Curve if Pavement is Rotated about Inner Edge
$\mathrm{fx}_{\mathrm{x}} \mathrm{L}_{\mathrm{t}}=\mathrm{e} \cdot \mathrm{N}_{\text {Rate }} \cdot\left(\mathrm{W}+\mathrm{W}_{\mathrm{ex}}\right)$

Open Calculator

ex $1124.249 \mathrm{~m}=0.07 \cdot 150.1 \cdot(7 \mathrm{~m}+100 \mathrm{~m})$

28) Radius of Circular Curve given Length of Transition Curve
$f \mathbf{f x} R_{t}=\frac{v_{1}^{3}}{C \cdot L_{s}}$
Open Calculator
ex $300.0214 \mathrm{~m}=\frac{(17 \mathrm{~m} / \mathrm{s})^{3}}{0.45 \mathrm{~m} / \mathrm{s}^{3} \cdot 36.39 \mathrm{~m}}$

Valley Curve

29) Length of Valley Curve for Head Light Sight Distance when Length is less than SSD

$$
\mathrm{L}_{\mathrm{Vc}}=2 \cdot \mathrm{SSD}-\left(\frac{2 \cdot \mathrm{~h}_{1}+2 \cdot \mathrm{SSD} \cdot \tan (\alpha)}{\mathrm{N}}\right)
$$

ex $154.5767 \mathrm{~m}=2 \cdot 160 \mathrm{~m}-\left(\frac{2 \cdot 0.75 \mathrm{~m}+2 \cdot 160 \mathrm{~m} \cdot \tan \left(2.1^{\circ}\right)}{0.08}\right)$
30) Length of Valley Curve for Head Light Sight Distance when Length is more than SSD
f. $\mathrm{L}_{\mathrm{Vc}}=\frac{\mathrm{N} \cdot \mathrm{SSD}^{2}}{2 \cdot \mathrm{~h}_{1}+2 \cdot \operatorname{SSD} \cdot \tan (\alpha)}$
$0.08 \cdot(160 \mathrm{~m})^{2}$
ex $154.7545 \mathrm{~m}=\frac{}{2 \cdot 0.75 \mathrm{~m}+2 \cdot 160 \mathrm{~m} \cdot \tan \left(2.1^{\circ}\right)}$
31) Length of Valley Curve given Beam Angle and Height of Head Light
$f \mathrm{x} \mathrm{L}_{\mathrm{Vc}}=2 \cdot \mathrm{SSD}-\left(\frac{1.5+0.035 \cdot \mathrm{SSD}}{\mathrm{N}}\right)$
Open Calculator
ex $231.25 \mathrm{~m}=2 \cdot 160 \mathrm{~m}-\left(\frac{1.5+0.035 \cdot 160 \mathrm{~m}}{0.08}\right)$
32) Length of Valley Curve given Height of Head Light and Beam Angle

$$
288.4507 \mathrm{~m}=0.08 \cdot \frac{(160 \mathrm{~m})^{2}}{1.5+0.035 \cdot 160 \mathrm{~m}}
$$ Open Calculator

Variables Used

- B Pavement Width (Meter)
- C Rate of Change of Centrifugal Acceleration (Meter per Cubic Second)
- e Rate of Superelevation
- h Height of Subject above Pavement Surface (Meter)
- H Height of Eye Level of Driver above Roadway (Meter)
- \mathbf{h}_{1} Average Head Light Height (Meter)
- $\mathbf{H}_{\mathbf{c}}$ Height of Camber (Meter)
- $\mathbf{h}_{\text {Elevation }}$ Elevation Difference (Meter)
- I Length of Wheel Base as per IRC (Meter)
- L_{c} Length of Curve (Meter)
- L_{e} Transition Curve Length for Superelevation (Meter)
- L_{s} Length of Transition Curve (Meter)
- Lsc Length of Parabolic Summit Curve (Meter)
- LSlope Transition Curve Length for Slope (Meter)
- $\mathbf{L}_{\mathbf{t}}$ Transition Curve Length (Meter)
- LTerrain Transition Curve Length for Terrain (Meter)
- LVc Length of Valley Curve (Meter)
- m Set Back Distance (Meter)
- \mathbf{n} Number of Traffic Lanes
- N Deviation Angle
- $\mathbf{N}_{\text {Rate }}$ Allowable Rate of Change of Superelevation
- $\mathbf{R}_{\mathbf{c}}$ Radius of Circular Curve (Meter)
- $\mathbf{R}_{\mathbf{t}}$ Radius of Curve for Road (Meter)
- s Percent Grade
- SSD Stopping Sight Distance (Meter)
- v Speed of Vehicle (Kilometer per Hour)
- \mathbf{v}_{1} Design Speed on Highways (Meter per Second)
- W Normal Pavement Width (Meter)
- We Total Extra Widening Required on Horizontal Curves (Meter)
- $\mathbf{W}_{\text {ex }}$ Extra Widening of Pavement (Meter)
- $\mathbf{W}_{\mathbf{m}}$ Mechanical Widening on Horizontal Curves (Meter)
- $\mathbf{W}_{\text {ps }}$ Psychological Widening on Horizontal Curves (Meter)
- X Distance from Center of Camber (Meter)
- $\boldsymbol{\alpha}$ Beam Angle (Degree)

Constants, Functions, Measurements used

- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Speed in Kilometer per Hour (km/h), Meter per Second (m/s)
Speed Unit Conversion
- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Jerk in Meter per Cubic Second ($\mathrm{m} / \mathrm{s}^{3}$) Jerk Unit Conversion

Check other formula lists

- Highway and Road Formulas • Sight Distances of Highway
- Highway Geometric Design Formulas Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

