unitsconverters.com

Truncated Cone Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 29 Truncated Cone Formulas

Truncated Cone

Height of Truncated Cone ©

1) Height of Truncated Cone given Curved Surface Area
$f \mathbf{f x} h=\sqrt{\left(\frac{\mathrm{CSA}}{\pi \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\mathrm{Top}}\right)}\right)^{2}-\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\mathrm{Top}}\right)^{2}}$
ex $7.124522 \mathrm{~m}=\sqrt{\left(\frac{170 \mathrm{~m}^{2}}{\pi \cdot(5 \mathrm{~m}+2 \mathrm{~m})}\right)^{2}-(5 \mathrm{~m}-2 \mathrm{~m})^{2}}$
2) Height of Truncated Cone given Slant Height
$f \times h=\sqrt{h_{\text {Slant }}^{2}-\left(r_{\text {Base }}-r_{\text {Top }}\right)^{2}}$
ex $7.416198 \mathrm{~m}=\sqrt{(8 \mathrm{~m})^{2}-(5 \mathrm{~m}-2 \mathrm{~m})^{2}}$
3) Height of Truncated Cone given Total Surface Area
$\mathrm{fx} \mathrm{h}=\sqrt{\left(\frac{\mathrm{TSA}-\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\mathrm{r}_{\mathrm{Top}}^{2}\right)}{\pi \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\mathrm{Top}}\right)}\right)^{2}-\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\mathrm{Top}}\right)^{2}}$
ex $7.069912 \mathrm{~m}=\sqrt{\left(\frac{260 \mathrm{~m}^{2}-\pi \cdot\left((5 \mathrm{~m})^{2}+(2 \mathrm{~m})^{2}\right)}{\pi \cdot(5 \mathrm{~m}+2 \mathrm{~m})}\right)^{2}-(5 \mathrm{~m}-2 \mathrm{~m})^{2}}$
4) Height of Truncated Cone given Volume
$\mathrm{fx} \mathrm{h}=\frac{3 \cdot \mathrm{~V}}{\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\left(\mathrm{r}_{\text {Base }} \cdot \mathrm{r}_{\mathrm{Top}}\right)+\mathrm{r}_{\text {Top }}^{2}\right)}$
ex $7.100759 \mathrm{~m}=\frac{3 \cdot 290 \mathrm{~m}^{3}}{\pi \cdot\left((5 \mathrm{~m})^{2}+(5 \mathrm{~m} \cdot 2 \mathrm{~m})+(2 \mathrm{~m})^{2}\right)}$

Radius of Truncated Cone

Base Radius of Truncated Cone

5) Base Radius of Truncated Cone given Base Area
$f x r_{\text {Base }}=\sqrt{\frac{A_{\text {Base }}}{\pi}}$
ex $5.046265 \mathrm{~m}=\sqrt{\frac{80 \mathrm{~m}^{2}}{\pi}}$
6) Base Radius of Truncated Cone given Slant Height
$\mathrm{fx} \mathrm{r}_{\text {Base }}=\mathrm{r}_{\text {Top }}+\sqrt{\mathrm{h}_{\text {Slant }}^{2}-\mathrm{h}^{2}}$
ex $5.872983 \mathrm{~m}=2 \mathrm{~m}+\sqrt{(8 \mathrm{~m})^{2}-(7 \mathrm{~m})^{2}}$

Top Radius of Truncated Cone

7) Top Radius of Truncated Cone given Slant Height
$\mathrm{fx} \mathrm{r}_{\text {Top }}=\mathrm{r}_{\text {Base }}-\sqrt{\mathrm{h}_{\text {Slant }}^{2}-\mathrm{h}^{2}}$
ex $1.127017 \mathrm{~m}=5 \mathrm{~m}-\sqrt{(8 \mathrm{~m})^{2}-(7 \mathrm{~m})^{2}}$
8) Top Radius of Truncated Cone given Top Area
$f \mathbf{x} \mathrm{r}_{\mathrm{Top}}=\sqrt{\frac{\mathrm{A}_{\mathrm{Top}}}{\pi}}$
ex $1.95441 \mathrm{~m}=\sqrt{\frac{12 \mathrm{~m}^{2}}{\pi}}$

Slant Height of Truncated Cone

9) Slant Height of Truncated Cone
$f \times \mathrm{h}_{\text {Slant }}=\sqrt{\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\mathrm{Top}}\right)^{2}+\mathrm{h}^{2}}$
ex $7.615773 \mathrm{~m}=\sqrt{(5 m-2 m)^{2}+(7 m)^{2}}$
10) Slant Height of Truncated Cone given Curved Surface Area
$f \times \mathrm{h}_{\text {Slant }}=\frac{\text { CSA }}{\pi \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\mathrm{Top}}\right)}$
ex $7.730383 \mathrm{~m}=\frac{170 \mathrm{~m}^{2}}{\pi \cdot(5 \mathrm{~m}+2 \mathrm{~m})}$
11) Slant Height of Truncated Cone given Total Surface Area
$f \times \mathrm{h}_{\text {Slant }}=\frac{\mathrm{TSA}-\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\mathrm{r}_{\mathrm{Top}}^{2}\right)}{\pi \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\mathrm{Top}}\right)}$
ex $7.680081 \mathrm{~m}=\frac{260 \mathrm{~m}^{2}-\pi \cdot\left((5 \mathrm{~m})^{2}+(2 \mathrm{~m})^{2}\right)}{\pi \cdot(5 \mathrm{~m}+2 \mathrm{~m})}$
12) Slant Height of Truncated Cone given Volume
$f \mathbf{x} \mathrm{~h}_{\text {Slant }}=\sqrt{\left(\frac{3 \cdot \mathrm{~V}}{\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\left(\mathrm{r}_{\text {Base }} \cdot \mathrm{r}_{\mathrm{Top}}\right)+\mathrm{r}_{\mathrm{Top}}^{2}\right)}\right)^{2}+\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\mathrm{Top}}\right)^{2}}$
ex $7.708487 \mathrm{~m}=\sqrt{\left(\frac{3 \cdot 290 \mathrm{~m}^{3}}{\pi \cdot\left((5 \mathrm{~m})^{2}+(5 \mathrm{~m} \cdot 2 \mathrm{~m})+(2 \mathrm{~m})^{2}\right)}\right)^{2}+(5 \mathrm{~m}-2 \mathrm{~m})^{2}}$

Surface Area of Truncated Cone [

Base Area of Truncated Cone

13) Base Area of Truncated Cone
$f \times A_{\text {Base }}=\pi \cdot \mathrm{r}_{\text {Base }}^{2}$
ex $78.53982 \mathrm{~m}^{2}=\pi \cdot(5 \mathrm{~m})^{2}$

Curved Surface Area of Truncated Cone

14) Curved Surface Area of Truncated Cone
f. $\mathrm{CSA}=\pi \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\text {Top }}\right) \cdot \sqrt{\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\text {Top }}\right)^{2}+\mathrm{h}^{2}}$
ex $167.4796 \mathrm{~m}^{2}=\pi \cdot(5 \mathrm{~m}+2 \mathrm{~m}) \cdot \sqrt{(5 \mathrm{~m}-2 \mathrm{~m})^{2}+(7 \mathrm{~m})^{2}}$
15) Curved Surface Area of Truncated Cone given Slant Height
f* CSA $=\pi \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\text {Top }}\right) \cdot \mathrm{h}_{\text {Slant }}$
ex $175.9292 \mathrm{~m}^{2}=\pi \cdot(5 \mathrm{~m}+2 \mathrm{~m}) \cdot 8 \mathrm{~m}$
16) Curved Surface Area of Truncated Cone given Total Surface Area
fx CSA $=\mathrm{TSA}-\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\mathrm{r}_{\text {Top }}^{2}\right)$
ex $168.8938 \mathrm{~m}^{2}=260 \mathrm{~m}^{2}-\pi \cdot\left((5 \mathrm{~m})^{2}+(2 \mathrm{~m})^{2}\right)$
17) Curved Surface Area of Truncated Cone given Volume

$f x$

$\mathrm{CSA}=\pi \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\mathrm{Top}}\right) \cdot \sqrt{\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\mathrm{Top}}\right)^{2}+\left(\frac{3 \cdot \mathrm{~V}}{\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\left(\mathrm{r}_{\text {Base }} \cdot \mathrm{r}_{\mathrm{Top}}\right)+\mathrm{r}_{\mathrm{Top}}^{2}\right)}\right)^{2}}$
ex $169.5185 \mathrm{~m}^{2}=\pi \cdot(5 \mathrm{~m}+2 \mathrm{~m}) \cdot \sqrt{(5 \mathrm{~m}-2 \mathrm{~m})^{2}+\left(\frac{3 \cdot 290 \mathrm{~m}^{3}}{\pi \cdot\left((5 \mathrm{~m})^{2}+(5 \mathrm{~m} \cdot 2 \mathrm{~m})+(2 \mathrm{~m})^{2}\right)}\right)^{2}}$

Top Area of Truncated Cone

18) Top Area of Truncated Cone
$\mathrm{fx} \mathrm{A}_{\text {Top }}=\pi \cdot \mathrm{r}_{\text {Top }}^{2}$
ex $12.56637 \mathrm{~m}^{2}=\pi \cdot(2 \mathrm{~m})^{2}$

Total Surface Area of Truncated Cone [

19) Total Surface Area of Truncated Cone \longleftarrow
$\mathrm{TSA}=\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\mathrm{r}_{\text {Top }}^{2}+\left(\sqrt{\left(\mathrm{r}_{\text {Top }}-\mathrm{r}_{\text {Base }}\right)^{2}+\mathrm{h}^{2}} \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\mathrm{Top}}\right)\right)\right)$
$258.5858 \mathrm{~m}^{2}=\pi \cdot\left((5 \mathrm{~m})^{2}+(2 \mathrm{~m})^{2}+\left(\sqrt{(2 \mathrm{~m}-5 \mathrm{~m})^{2}+(7 \mathrm{~m})^{2}} \cdot(5 \mathrm{~m}+2 \mathrm{~m})\right)\right)$
20) Total Surface Area of Truncated Cone given Curved Surface Area
$\mathrm{fx} \mathrm{TSA}=\mathrm{CSA}+\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\mathrm{r}_{\mathrm{Top}}^{2}\right)$
x $261.1062 \mathrm{~m}^{2}=170 \mathrm{~m}^{2}+\pi \cdot\left((5 \mathrm{~m})^{2}+(2 \mathrm{~m})^{2}\right)$
21) Total Surface Area of Truncated Cone given Slant Height
$\mathrm{fx} \mathrm{TSA}=\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\mathrm{r}_{\text {Top }}^{2}+\left(\mathrm{h}_{\text {Slant }} \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\text {Top }}\right)\right)\right)$
ex $267.0354 \mathrm{~m}^{2}=\pi \cdot\left((5 \mathrm{~m})^{2}+(2 \mathrm{~m})^{2}+(8 \mathrm{~m} \cdot(5 \mathrm{~m}+2 \mathrm{~m}))\right)$
22) Total Surface Area of Truncated Cone given Volume
$\mathrm{TSA}=\left(\pi \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\mathrm{Top}}\right) \cdot \sqrt{\left(\frac{3 \cdot \mathrm{~V}}{\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\left(\mathrm{r}_{\text {Base }} \cdot \mathrm{r}_{\mathrm{Top}}\right)+\mathrm{r}_{\mathrm{Top}}^{2}\right)}\right)^{2}+\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\mathrm{Top}}\right)^{2}}+\right.$
$260.6247 \mathrm{~m}^{2}=\left(\pi \cdot(5 \mathrm{~m}+2 \mathrm{~m}) \cdot \sqrt{\left.\left(\frac{3 \cdot 290 \mathrm{~m}^{3}}{\pi \cdot\left((5 \mathrm{~m})^{2}+(5 \mathrm{~m} \cdot 2 \mathrm{~m})+(2 \mathrm{~m})^{2}\right)}\right)^{2}+(5 \mathrm{~m}-2 \mathrm{~m})^{2}\right)}+\left(\pi \cdot\left((5 \mathrm{~m})^{2}+\right.\right.\right.$

Surface to Volume Ratio of Truncated Cone ©

23) Surface to Volume Ratio of Truncated Cone

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A} / \mathrm{V}}=3 \cdot \frac{\mathrm{r}_{\text {Base }}^{2}+\mathrm{r}_{\text {Top }}^{2}+\left(\sqrt{\left(\mathrm{r}_{\text {Top }}-\mathrm{r}_{\text {Base }}\right)^{2}+\mathrm{h}^{2}} \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\text {Top }}\right)\right)}{\mathrm{h} \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\left(\mathrm{r}_{\text {Base }} \cdot \mathrm{r}_{\mathrm{Top}}\right)+\mathrm{r}_{\text {Top }}^{2}\right)} \\
& 0.90451 \mathrm{~m}^{-1}=3 \cdot \frac{(5 \mathrm{~m})^{2}+(2 \mathrm{~m})^{2}+\left(\sqrt{(2 \mathrm{~m}-5 \mathrm{~m})^{2}+(7 \mathrm{~m})^{2}} \cdot(5 \mathrm{~m}+2 \mathrm{~m})\right)}{7 \mathrm{~m} \cdot\left((5 \mathrm{~m})^{2}+(5 \mathrm{~m} \cdot 2 \mathrm{~m})+(2 \mathrm{~m})^{2}\right)}
\end{aligned}
$$

24) Surface to Volume Ratio of Truncated Cone given Curved Surface Area

$$
\begin{aligned}
& f \times \mathrm{R}_{\mathrm{A} / \mathrm{V}}=\frac{\mathrm{CSA}+\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\mathrm{r}_{\text {Top }}^{2}\right)}{\frac{\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\left(\mathrm{r}_{\text {Base }} \cdot \mathrm{r}_{\text {Top }}\right)+\mathrm{r}_{\text {Top }}^{2}\right)}{3} \cdot \sqrt{\left(\frac{\mathrm{CSA}}{\pi \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\text {Top }}\right)}\right)^{2}-\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\mathrm{Top}}\right)^{2}}} \\
& \mathrm{ex} 0.897363 \mathrm{~m}^{-1}=\frac{170 \mathrm{~m}^{2}+\pi \cdot\left((5 \mathrm{~m})^{2}+(2 \mathrm{~m})^{2}\right)}{\frac{\pi \cdot\left((5 \mathrm{~m})^{2}+(5 \mathrm{~m} \cdot 2 \mathrm{~m})+(2 \mathrm{~m})^{2}\right)}{3} \cdot \sqrt{\left(\frac{170 \mathrm{~m}^{2}}{\pi \cdot(5 \mathrm{~m}+2 \mathrm{~m})}\right)^{2}-(5 \mathrm{~m}-2 \mathrm{~m})^{2}}}
\end{aligned}
$$

25) Surface to Volume Ratio of Truncated Cone given Slant Height
f. $R_{A / v}=$

$$
\frac{3 \cdot\left(r_{\text {Base }}^{2}+r_{\text {Top }}^{2}+\left(h_{\text {Slant }} \cdot\left(r_{\text {Base }}+r_{\text {Top }}\right)\right)\right)}{\mathrm{nt}^{2}-\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\text {Top }}\right)^{2} \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\left(\mathrm{r}_{\text {Base }} \cdot \mathrm{r}_{\text {Top }}\right)+\mathrm{r}_{\text {Top }}^{2}\right)}
$$

ex

$$
0.881646 \mathrm{~m}^{-1}=\frac{3 \cdot\left((5 \mathrm{~m})^{2}+(2 \mathrm{~m})^{2}+(8 \mathrm{~m} \cdot(5 \mathrm{~m}+2 \mathrm{~m}))\right)}{\sqrt{(8 \mathrm{~m})^{2}-(5 \mathrm{~m}-2 \mathrm{~m})^{2}} \cdot\left((5 \mathrm{~m})^{2}+(5 \mathrm{~m} \cdot 2 \mathrm{~m})+(2 \mathrm{~m})^{2}\right)}
$$

Volume of Truncated Cone

26) Volume of Truncated Cone

$\mathrm{fx}=\frac{\pi}{3} \cdot \mathrm{~h} \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\left(\mathrm{r}_{\text {Base }} \cdot \mathrm{r}_{\text {Top }}\right)+\mathrm{r}_{\text {Top }}^{2}\right)$
ex $285.8849 \mathrm{~m}^{3}=\frac{\pi}{3} \cdot 7 \mathrm{~m} \cdot\left((5 \mathrm{~m})^{2}+(5 \mathrm{~m} \cdot 2 \mathrm{~m})+(2 \mathrm{~m})^{2}\right)$
27) Volume of Truncated Cone given Curved Surface Area
$\mathrm{V}=\frac{\pi}{3} \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\left(\mathrm{r}_{\text {Base }} \cdot \mathrm{r}_{\mathrm{Top}}\right)+\mathrm{r}_{\mathrm{Top}}^{2}\right) \cdot \sqrt{\left(\frac{\mathrm{CSA}}{\pi \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\mathrm{Top}}\right)}\right)^{2}-\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\mathrm{Top}}\right)^{2}}$
ex $290.9705 \mathrm{~m}^{3}=\frac{\pi}{3} \cdot\left((5 \mathrm{~m})^{2}+(5 \mathrm{~m} \cdot 2 \mathrm{~m})+(2 \mathrm{~m})^{2}\right) \cdot \sqrt{\left(\frac{170 \mathrm{~m}^{2}}{\pi \cdot(5 \mathrm{~m}+2 \mathrm{~m})}\right)^{2}-(5 \mathrm{~m}-2 \mathrm{~m})^{2}}$
28) Volume of Truncated Cone given Slant Height
$\mathrm{fx} \mathrm{V}=\frac{\pi}{3} \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\left(\mathrm{r}_{\text {Base }} \cdot \mathrm{r}_{\mathrm{Top}}\right)+\mathrm{r}_{\text {Top }}^{2}\right) \cdot \sqrt{\mathrm{h}_{\text {Slant }}^{2}-\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\mathrm{Top}}\right)^{2}}$
ex $302.8828 \mathrm{~m}^{3}=\frac{\pi}{3} \cdot\left((5 \mathrm{~m})^{2}+(5 \mathrm{~m} \cdot 2 \mathrm{~m})+(2 \mathrm{~m})^{2}\right) \cdot \sqrt{(8 \mathrm{~m})^{2}-(5 \mathrm{~m}-2 \mathrm{~m})^{2}}$
29) Volume of Truncated Cone given Total Surface Area
$\mathrm{V}=\frac{\pi}{3} \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\left(\mathrm{r}_{\text {Base }} \cdot \mathrm{r}_{\mathrm{Top}}\right)+\mathrm{r}_{\mathrm{Top}}^{2}\right) \cdot \sqrt{\left(\frac{\mathrm{TSA}-\pi \cdot\left(\mathrm{r}_{\text {Base }}^{2}+\mathrm{r}_{\mathrm{Top}}^{2}\right)}{\pi \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{r}_{\mathrm{Top}}\right)}\right)^{2}-\left(\mathrm{r}_{\text {Base }}-\mathrm{r}_{\mathrm{Top}}\right)^{2}}$

Variables Used

- ABase Base Area of Truncated Cone (Square Meter)
- $\mathbf{A}_{\text {Top }}$ Top Area of Truncated Cone (Square Meter)
- CSA Curved Surface Area of Truncated Cone (Square Meter)
- \mathbf{h} Height of Truncated Cone (Meter)
- $\mathbf{h}_{\text {Slant }}$ Slant Height of Truncated Cone (Meter)
- $\mathbf{R}_{\mathbf{A} / \mathbf{V}}$ Surface to Volume Ratio of Truncated Cone (1 per Meter)
- $\mathbf{r}_{\text {Base }}$ Base Radius of Truncated Cone (Meter)
- $\mathbf{r}_{\text {Top }}$ Top Radius of Truncated Cone (Meter)
- TSA Total Surface Area of Truncated Cone (Square Meter)
- V Volume of Truncated Cone (Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter $\left(\mathrm{m}^{3}\right)$

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Reciprocal Length in 1 per Meter $\left(\mathrm{m}^{-1}\right)$

Reciprocal Length Unit Conversion

Check other formula lists

- Cone Formulas
- Truncated Cone Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

