



# **Truncated Cone Formulas**

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

1/11





# List of 29 Truncated Cone Formulas

# Truncated Cone 🕑

# Height of Truncated Cone 🕑

1) Height of Truncated Cone given Curved Surface Area 🕑

$$\mathbf{\hat{h}} \mathbf{h} = \sqrt{\left(rac{\mathrm{CSA}}{\pi \cdot (\mathbf{r}_{\mathrm{Base}} + \mathbf{r}_{\mathrm{Top}})}
ight)^2 - (\mathbf{r}_{\mathrm{Base}} - \mathbf{r}_{\mathrm{Top}})^2}$$

ex 7.124522m = 
$$\sqrt{\left(\frac{170m^2}{\pi \cdot (5m+2m)}\right)^2 - (5m-2m)^2}$$

2) Height of Truncated Cone given Slant Height 🕑

fx 
$$h = \sqrt{h_{Slant}^2 - (r_{Base} - r_{Top})^2}$$
  
ex 7.416198m =  $\sqrt{(8m)^2 - (5m - 2m)^2}$ 

#### 3) Height of Truncated Cone given Total Surface Area 🕑

$$oldsymbol{\lambda} \mathbf{h} = \sqrt{\left(rac{\mathrm{TSA} - \pi \cdot \left(\mathbf{r}_{\mathrm{Base}}^2 + \mathbf{r}_{\mathrm{Top}}^2
ight)}{\pi \cdot \left(\mathbf{r}_{\mathrm{Base}} + \mathbf{r}_{\mathrm{Top}}
ight)}
ight)^2 - \left(\mathbf{r}_{\mathrm{Base}} - \mathbf{r}_{\mathrm{Top}}
ight)^2}$$

ex 7.069912m = 
$$\sqrt{\left(\frac{260m^2 - \pi \cdot \left((5m)^2 + (2m)^2\right)}{\pi \cdot (5m + 2m)}\right)^2 - (5m - 2m)^2}$$

#### 4) Height of Truncated Cone given Volume

$$\mathbf{fx} \mathbf{h} = \frac{3 \cdot \mathbf{V}}{\pi \cdot \left(\mathbf{r}_{\text{Base}}^2 + (\mathbf{r}_{\text{Base}} \cdot \mathbf{r}_{\text{Top}}) + \mathbf{r}_{\text{Top}}^2\right)}$$
ex 7.100759m = 
$$\frac{3 \cdot 290 \text{m}^3}{\pi \cdot \left((5 \text{m})^2 + (5 \text{m} \cdot 2 \text{m}) + (2 \text{m})^2\right)}$$

Open Calculator 🛃

# ()

2/11

Open Calculator 🕑

Open Calculator 🛃

Open Calculator

Open Calculator

Open Calculator 🕑

## Radius of Truncated Cone 🕑

#### Base Radius of Truncated Cone 🕑



fx 
$$\mathbf{r}_{\mathrm{Base}} = \sqrt{\frac{\mathbf{A}_{\mathrm{Base}}}{\pi}}$$
  
ex  $5.046265\mathrm{m} = \sqrt{\frac{80\mathrm{m}^2}{\pi}}$ 

6) Base Radius of Truncated Cone given Slant Height 🕑

fx 
$$\mathbf{r}_{\mathrm{Base}} = \mathbf{r}_{\mathrm{Top}} + \sqrt{\mathbf{h}_{\mathrm{Slant}}^2 - \mathbf{h}^2}$$

$$= 2m + \sqrt{(8m)^2 - (7m)^2}$$

Top Radius of Truncated Cone 🕑

#### 7) Top Radius of Truncated Cone given Slant Height 🕑

fx 
$$\mathbf{r}_{\mathrm{Top}} = \mathbf{r}_{\mathrm{Base}} - \sqrt{\mathbf{h}_{\mathrm{Slant}}^2 - \mathbf{h}^2}$$

$$1.127017 \mathrm{m} = 5 \mathrm{m} - \sqrt{\left(8 \mathrm{m} 
ight)^2 - \left(7 \mathrm{m} 
ight)^2}$$

8) Top Radius of Truncated Cone given Top Area 🕑

fx 
$$\mathbf{r}_{\mathrm{Top}} = \sqrt{\frac{\mathbf{A}_{\mathrm{Top}}}{\pi}}$$

ex 
$$1.95441 \mathrm{m} = \sqrt{\frac{12 \mathrm{m}^2}{\pi}}$$

# Slant Height of Truncated Cone 🕑

9) Slant Height of Truncated Cone

fx 
$$h_{Slant} = \sqrt{(r_{Base} - r_{Top})^2 + h^2}$$
  
ex  $7.615773m = \sqrt{(5m - 2m)^2 + (7m)^2}$ 

Open Calculator 🛃

Open Calculator

Open Calculator 🚰





#### 10) Slant Height of Truncated Cone given Curved Surface Area 🕑

$$\mathbf{fx} \mathbf{h}_{\text{Slant}} = \frac{\text{CSA}}{\pi \cdot (\mathbf{r}_{\text{Base}} + \mathbf{r}_{\text{Top}})}$$

$$\mathbf{ex} 7.730383 \mathbf{m} = \frac{170 \mathbf{m}^2}{\pi \cdot (5\mathbf{m} + 2\mathbf{m})}$$

11) Slant Height of Truncated Cone given Total Surface Area 🕑

$$\mathbf{fx} \mathbf{h}_{\text{Slant}} = \frac{\text{TSA} - \pi \cdot \left(\mathbf{r}_{\text{Base}}^2 + \mathbf{r}_{\text{Top}}^2\right)}{\pi \cdot \left(\mathbf{r}_{\text{Base}} + \mathbf{r}_{\text{Top}}\right)}$$

$$\mathbf{fx} \mathbf{r}_{\text{Slant}} = \frac{260\text{m}^2 - \pi \cdot \left((5\text{m})^2 + (2\text{m})^2\right)}{\pi \cdot (5\text{m} + 2\text{m})}$$

#### 12) Slant Height of Truncated Cone given Volume

$$\mathbf{\hat{k}} \mathbf{h}_{\text{Slant}} = \sqrt{\left(\frac{3 \cdot V}{\pi \cdot \left(\mathbf{r}_{\text{Base}}^2 + (\mathbf{r}_{\text{Base}} \cdot \mathbf{r}_{\text{Top}}) + \mathbf{r}_{\text{Top}}^2\right)}\right)^2 + (\mathbf{r}_{\text{Base}} - \mathbf{r}_{\text{Top}})^2}$$

$$\mathbf{\hat{k}} \mathbf{\hat{k}} \mathbf{$$

# Base Area of Truncated Cone 🕑

#### 13) Base Area of Truncated Cone 🕑

fx 
$$A_{Base} = \pi \cdot r_{Base}^2$$
  
ex  $78.53982m^2 = \pi \cdot (5m)^2$ 

Open Calculator 🗗





Open Calculator 🕑

Open Calculator 🚰

Open Calculator





()

5/11

#### Total Surface Area of Truncated Cone 🕑

# 19) Total Surface Area of Truncated Cone 🕑

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \label{eq:state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-stat$$

$$260.6247 \mathrm{m}^{_{2}} = \left(\pi \cdot (5\mathrm{m} + 2\mathrm{m}) \cdot \sqrt{\left(\frac{3 \cdot 290 \mathrm{m}^{_{3}}}{\pi \cdot \left((5\mathrm{m})^{^{2}} + (5\mathrm{m} \cdot 2\mathrm{m}) + (2\mathrm{m})^{^{2}}\right)}\right)^{^{2}} + (5\mathrm{m} - 2\mathrm{m})^{^{2}}}\right) + \left(\pi \cdot \left((5\mathrm{m})^{^{2}} + (5\mathrm{m} - 2\mathrm{m})^{^{2}}\right)^{^{2}} + (5\mathrm{m} - 2\mathrm{m})^{^{2}}\right)^{^{2}} + (5\mathrm{m} - 2\mathrm{m})^{^{2}}\right) + \left(\pi \cdot \left((5\mathrm{m})^{^{2}} + (5\mathrm{m} - 2\mathrm{m})^{^{2}}\right)^{^{2}}\right)^{^{2}} + (5\mathrm{m} - 2\mathrm{m})^{^{2}}\right)^{^{2}} + (5\mathrm{m} - 2\mathrm{m})^{^{2}}\right)^{^{2}} + (5\mathrm{m} - 2\mathrm{m})^{^{2}}$$





# Surface to Volume Ratio of Truncated Cone

#### 23) Surface to Volume Ratio of Truncated Cone 🕑

$$\begin{split} \widehat{\mathbf{K}} \\ \mathbf{R}_{A/V} &= 3 \cdot \frac{\mathbf{r}_{Base}^2 + \mathbf{r}_{Top}^2 + \left(\sqrt{\left(\mathbf{r}_{Top} - \mathbf{r}_{Base}\right)^2 + \mathbf{h}^2} \cdot \left(\mathbf{r}_{Base} + \mathbf{r}_{Top}\right)\right)}{\mathbf{h} \cdot \left(\mathbf{r}_{Base}^2 + \left(\mathbf{r}_{Base} \cdot \mathbf{r}_{Top}\right) + \mathbf{r}_{Top}^2\right)} \\ &= \frac{(5m)^2 + (2m)^2 + \left(\sqrt{(2m - 5m)^2 + (7m)^2} \cdot (5m + 2m)\right)}{(5m + 2m)^2} \end{split}$$

ex 
$$0.90451 \text{m}^{-1} = 3 \cdot \frac{(5\text{m})^2 + (2\text{m})^2 + (\sqrt{(2\text{m} - 5\text{m})^2 + (7\text{m})^2 \cdot (5\text{m} + 2\text{m})})}{7\text{m} \cdot ((5\text{m})^2 + (5\text{m} \cdot 2\text{m}) + (2\text{m})^2)}$$

#### 24) Surface to Volume Ratio of Truncated Cone given Curved Surface Area

$$\mathbf{\hat{R}} \mathbf{R}_{\mathrm{A/V}} = \frac{\mathrm{CSA} + \pi \cdot \left(\mathbf{r}_{\mathrm{Base}}^{2} + \mathbf{r}_{\mathrm{Top}}^{2}\right)}{\frac{\pi \cdot \left(\mathbf{r}_{\mathrm{Base}}^{2} + (\mathbf{r}_{\mathrm{Base}} \cdot \mathbf{r}_{\mathrm{Top}}) + \mathbf{r}_{\mathrm{Top}}^{2}\right)}{3} \cdot \sqrt{\left(\frac{\mathrm{CSA}}{\pi \cdot (\mathbf{r}_{\mathrm{Base}} + \mathbf{r}_{\mathrm{Top}})}\right)^{2} - \left(\mathbf{r}_{\mathrm{Base}} - \mathbf{r}_{\mathrm{Top}}\right)^{2}}}$$

$$\underbrace{0.897363\mathrm{m}^{_{-1}} = \frac{170\mathrm{m}^2 + \pi \cdot \left( \left(5\mathrm{m}\right)^2 + \left(2\mathrm{m}\right)^2 \right)}{\frac{\pi \cdot \left( (5\mathrm{m}\right)^2 + \left(5\mathrm{m} \cdot 2\mathrm{m}\right) + \left(2\mathrm{m}\right)^2 \right)}{3} \cdot \sqrt{\left(\frac{170\mathrm{m}^2}{\pi \cdot (5\mathrm{m} + 2\mathrm{m})}\right)^2 - \left(5\mathrm{m} - 2\mathrm{m}\right)^2}}$$

#### 25) Surface to Volume Ratio of Truncated Cone given Slant Height 🚰

$$\begin{aligned} & \textbf{K} \quad \textbf{R}_{A/V} = \frac{3 \cdot \left( r_{Base}^2 + r_{Top}^2 + (h_{Slant} \cdot (r_{Base} + r_{Top})) \right)}{\sqrt{h_{Slant}^2 - (r_{Base} - r_{Top})^2} \cdot \left( r_{Base}^2 + (r_{Base} \cdot r_{Top}) + r_{Top}^2 \right)} \end{aligned}$$

# Volume of Truncated Cone

#### 26) Volume of Truncated Cone

$$\mathbf{x} = \frac{\pi}{3} \cdot \mathbf{h} \cdot \left(\mathbf{r}_{\text{Base}}^2 + (\mathbf{r}_{\text{Base}} \cdot \mathbf{r}_{\text{Top}}) + \mathbf{r}_{\text{Top}}^2\right)$$

ex 
$$285.8849 \text{m}^3 = \frac{\pi}{3} \cdot 7 \text{m} \cdot ((5\text{m})^2 + (5\text{m} \cdot 2\text{m}) + (2\text{m})^2)$$

Open Calculator

Open Calculator



Open Calculator 🕑



Truncated Cone Formulas...

fx

fx

#### 27) Volume of Truncated Cone given Curved Surface Area

$$\boxed{\begin{array}{l} \textbf{V} = \frac{\pi}{3} \cdot \left( \textbf{r}_{\text{Base}}^2 + (\textbf{r}_{\text{Base}} \cdot \textbf{r}_{\text{Top}}) + \textbf{r}_{\text{Top}}^2 \right) \cdot \sqrt{\left( \frac{\text{CSA}}{\pi \cdot (\textbf{r}_{\text{Base}} + \textbf{r}_{\text{Top}})} \right)^2 - (\textbf{r}_{\text{Base}} - \textbf{r}_{\text{Top}})^2}} \end{array}}$$

ex 290.9705m<sup>3</sup> = 
$$\frac{\pi}{3} \cdot \left( (5m)^2 + (5m \cdot 2m) + (2m)^2 \right) \cdot \sqrt{\left( \frac{170m^2}{\pi \cdot (5m + 2m)} \right)^2 - (5m - 2m)^2}$$

28) Volume of Truncated Cone given Slant Height 🕑

$$\mathbf{fx} = \frac{\pi}{3} \cdot \left( \mathbf{r}_{\text{Base}}^2 + (\mathbf{r}_{\text{Base}} \cdot \mathbf{r}_{\text{Top}}) + \mathbf{r}_{\text{Top}}^2 \right) \cdot \sqrt{\mathbf{h}_{\text{Slant}}^2 - (\mathbf{r}_{\text{Base}} - \mathbf{r}_{\text{Top}})^2 }$$

$$\mathbf{ex} \quad 302.8828 \mathbf{m}^3 = \frac{\pi}{2} \cdot \left( (5\mathbf{m})^2 + (5\mathbf{m} \cdot 2\mathbf{m}) + (2\mathbf{m})^2 \right) \cdot \sqrt{(8\mathbf{m})^2 - (5\mathbf{m} - 2\mathbf{m})^2}$$

$$302.8828 \text{m}^{3} = \frac{\pi}{3} \cdot \left( (5\text{m})^{2} + (5\text{m} \cdot 2\text{m}) + (2\text{m})^{2} \right) \cdot \sqrt{(8\text{m})^{2} - (5\text{m} - 2\text{m})^{2}}$$

29) Volume of Truncated Cone given Total Surface Area

Open Calculator 🕑

Open Calculator 🖸

$$\mathrm{V} = rac{\pi}{3} \cdot \left(\mathrm{r}_{\mathrm{Base}}^2 + (\mathrm{r}_{\mathrm{Base}} \cdot \mathrm{r}_{\mathrm{Top}}) + \mathrm{r}_{\mathrm{Top}}^2
ight) \cdot \sqrt{\left(rac{\mathrm{TSA} - \pi \cdot \left(\mathrm{r}_{\mathrm{Base}}^2 + \mathrm{r}_{\mathrm{Top}}^2
ight)}{\pi \cdot (\mathrm{r}_{\mathrm{Base}} + \mathrm{r}_{\mathrm{Top}})}
ight)^2 - (\mathrm{r}_{\mathrm{Base}} - \mathrm{r}_{\mathrm{Top}})^2$$

ex 288.7402m<sup>3</sup> = 
$$\frac{\pi}{3} \cdot \left( (5m)^2 + (5m \cdot 2m) + (2m)^2 \right) \cdot \sqrt{\left( \frac{260m^2 - \pi \cdot \left( (5m)^2 + (2m)^2 \right)}{\pi \cdot (5m + 2m)} \right)^2 - (5m - 2m)^2}$$



# Variables Used

- ABase Base Area of Truncated Cone (Square Meter)
- ATop Top Area of Truncated Cone (Square Meter)
- CSA Curved Surface Area of Truncated Cone (Square Meter)
- h Height of Truncated Cone (Meter)
- h<sub>Slant</sub> Slant Height of Truncated Cone (Meter)
- RAV Surface to Volume Ratio of Truncated Cone (1 per Meter)
- **r**Base Base Radius of Truncated Cone (Meter)
- Top Radius of Truncated Cone (Meter)
- TSA Total Surface Area of Truncated Cone (Square Meter)
- V Volume of Truncated Cone (Cubic Meter)



# **Constants, Functions, Measurements used**

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: sqrt, sqrt(Number) Square root function
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Volume in Cubic Meter (m<sup>3</sup>) Volume Unit Conversion
- Measurement: Area in Square Meter (m<sup>2</sup>) Area Unit Conversion
- Measurement: Reciprocal Length in 1 per Meter (m<sup>-1</sup>) Reciprocal Length Unit Conversion





# **Check other formula lists**

Cone Formulas

Truncated Cone Formulas

Feel free to SHARE this document with your friends!

#### PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/12/2023 | 2:46:41 PM UTC

Please leave your feedback here ...



