unitsconverters.com

Torsion of Bars Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Torsion of Bars Formulas

Torsion of Bars

Elastic Perfectly Plastic Materials

1) Elasto Plastic Yielding Torque for Hollow Shaft
$\mathrm{fx} \mathrm{T}_{\mathrm{ep}}=\pi \cdot \boldsymbol{\tau}_{0} \cdot\left(\frac{\rho^{3}}{2} \cdot\left(1-\left(\frac{\mathrm{r}_{1}}{\rho}\right)^{4}\right)+\left(\frac{2}{3} \cdot \mathrm{r}_{2}^{3}\right) \cdot\left(1-\left(\frac{\rho}{\mathrm{r}_{2}}\right)^{3}\right)\right)$
ex
$2.6 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=\pi \cdot 145 \mathrm{MPa} \cdot\left(\frac{(80 \mathrm{~mm})^{3}}{2} \cdot\left(1-\left(\frac{40 \mathrm{~mm}}{80 \mathrm{~mm}}\right)^{4}\right)+\left(\frac{2}{3} \cdot(100 \mathrm{~mm})^{3}\right) \cdot\left(1-\left(\frac{80 \mathrm{~mm}}{100 \mathrm{~mm}}\right)^{3}\right)\right)$
2) Elasto Plastic Yielding Torque for Solid Shaft
$\mathrm{fx} \mathrm{T}_{\mathrm{ep}}=\frac{2}{3} \cdot \pi \cdot \mathrm{r}_{2}^{3} \cdot \boldsymbol{\tau}_{0} \cdot\left(1-\frac{1}{4} \cdot\left(\frac{\rho}{\mathrm{r}_{2}}\right)^{3}\right)$
ex $2.6 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=\frac{2}{3} \cdot \pi \cdot(100 \mathrm{~mm})^{3} \cdot 145 \mathrm{MPa} \cdot\left(1-\frac{1}{4} \cdot\left(\frac{80 \mathrm{~mm}}{100 \mathrm{~mm}}\right)^{3}\right)$
3) Full Yielding Torque for Hollow Shaft
$\mathbf{f x} \mathrm{T}_{\mathrm{f}}=\frac{2}{3} \cdot \pi \cdot \mathrm{r}_{2}^{3} \cdot \boldsymbol{\tau}_{0} \cdot\left(1-\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{3}\right)$
ex $2.8 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=\frac{2}{3} \cdot \pi \cdot(100 \mathrm{~mm})^{3} \cdot 145 \mathrm{MPa} \cdot\left(1-\left(\frac{40 \mathrm{~mm}}{100 \mathrm{~mm}}\right)^{3}\right)$
4) Full Yielding Torque for Solid Shaft
$f \mathrm{fx} \mathrm{T}_{\mathrm{f}}=\frac{2}{3} \cdot \pi \cdot \boldsymbol{\tau}_{0} \cdot \mathrm{r}_{2}^{3}$
ex $3 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=\frac{2}{3} \cdot \pi \cdot 145 \mathrm{MPa} \cdot(100 \mathrm{~mm})^{3}$
5) Incipient Yielding Torque for Hollow Shaft
$\mathrm{fx} \mathrm{T}_{\mathrm{i}}=\frac{\pi}{2} \cdot \mathrm{r}_{2}^{3} \cdot \boldsymbol{\tau}_{0} \cdot\left(1-\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{4}\right)$
ex $2.2 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=\frac{\pi}{2} \cdot(100 \mathrm{~mm})^{3} \cdot 145 \mathrm{MPa} \cdot\left(1-\left(\frac{40 \mathrm{~mm}}{100 \mathrm{~mm}}\right)^{4}\right)$
6) Incipient Yielding Torque for Solid Shaft
$\mathrm{fx}_{\mathrm{x}} \mathrm{T}_{\mathrm{i}}=\frac{\pi \cdot \mathrm{r}_{2}^{3} \cdot \boldsymbol{\tau}_{0}}{2}$
ex $2.3 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=\frac{\pi \cdot(100 \mathrm{~mm})^{3} \cdot 145 \mathrm{MPa}}{2}$

Elastic Work Hardening Material 룬

7) Elasto Plastic Yielding Torque in Work Hardening for Hollow Shaft
$f \mathrm{f}$
$\mathrm{T}_{\mathrm{ep}}=\frac{2 \cdot \pi \cdot \boldsymbol{\tau}_{\text {nonlinear }} \cdot \mathrm{r}_{2}^{3}}{3} \cdot\left(\frac{3 \cdot \rho^{3}}{\mathrm{r}_{2}^{3} \cdot(\mathrm{n}+3)}-\left(\frac{3}{\mathrm{n}+3}\right) \cdot\left(\frac{\mathrm{r}_{1}}{\rho}\right)^{\mathrm{n}} \cdot\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{3}+1-\left(\frac{\rho}{\mathrm{r}_{2}}\right)^{3}\right)$
ex
$3.3 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=\frac{2 \cdot \pi \cdot 175 \mathrm{MPa} \cdot(100 \mathrm{~mm})^{3}}{3} \cdot\left(\frac{3 \cdot(80 \mathrm{~mm})^{3}}{(100 \mathrm{~mm})^{3} \cdot(0.25+3)}-\left(\frac{3}{0.25+3}\right) \cdot\left(\frac{40 \mathrm{~mm}}{80 \mathrm{~mm}}\right)^{0.25} \cdot\left(\frac{4}{1 \mathrm{C}}\right.\right.$
8) Elasto Plastic Yielding Torque in Work Hardening for Solid Shaft
$\mathrm{fx} \mathrm{T}_{\mathrm{ep}}=\frac{2 \cdot \pi \cdot \boldsymbol{\tau}_{\text {nonlinear }} \cdot \mathrm{r}_{2}^{3}}{3} \cdot\left(1-\left(\frac{\mathrm{n}}{\mathrm{n}+3}\right) \cdot\left(\frac{\rho}{\mathrm{r}_{2}}\right)^{3}\right)$
ex $3.5 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=\frac{2 \cdot \pi \cdot 175 \mathrm{MPa} \cdot(100 \mathrm{~mm})^{3}}{3} \cdot\left(1-\left(\frac{0.25}{0.25+3}\right) \cdot\left(\frac{80 \mathrm{~mm}}{100 \mathrm{~mm}}\right)^{3}\right)$
9) Full Yielding Torque in Work Hardening for Hollow Shaft
$f \mathbf{x} \mathrm{~T}_{\mathrm{f}}=\frac{2 \cdot \pi \cdot \boldsymbol{\tau}_{\text {nonlinear }} \cdot \mathrm{r}_{2}^{3}}{3} \cdot\left(1-\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{3}\right)$
ex $3.4 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=\frac{2 \cdot \pi \cdot 175 \mathrm{MPa} \cdot(100 \mathrm{~mm})^{3}}{3} \cdot\left(1-\left(\frac{40 \mathrm{~mm}}{100 \mathrm{~mm}}\right)^{3}\right)$
10) Full Yielding Torque in Work Hardening for Solid Shaft
$f \mathrm{x} \mathrm{T}_{\mathrm{f}}=\frac{2 \cdot \pi \cdot \boldsymbol{\tau}_{\text {nonlinear }} \cdot \mathrm{r}_{2}^{3}}{3}$
ex $3.7 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=\frac{2 \cdot \pi \cdot 175 \mathrm{MPa} \cdot(100 \mathrm{~mm})^{3}}{3}$
11) Incipient Yielding Torque in Work Hardening for Hollow Shaft \mathcal{J}
$\mathrm{fx} \mathrm{T}_{\mathrm{i}}=\frac{\boldsymbol{\tau}_{\text {nonlinear }} \cdot \mathrm{J}_{\mathrm{n}}}{\mathrm{r}_{2}^{\mathrm{n}}}$
ex $1804.954 \mathrm{~N}^{*} \mathrm{~mm}=\frac{175 \mathrm{MPa} \cdot 5800 \mathrm{~mm}^{4}}{(100 \mathrm{~mm})^{0.25}}$
12) Incipient Yielding Torque in Work Hardening Solid Shaft
$\mathbf{f x} \mathrm{T}_{\mathrm{i}}=\frac{\boldsymbol{\tau}_{\text {nonlinear }} \cdot \mathrm{J}_{\mathrm{n}}}{\mathrm{r}_{2}^{\mathrm{n}}}$
ex $1804.954 \mathrm{~N}^{*} \mathrm{~mm}=\frac{175 \mathrm{MPa} \cdot 5800 \mathrm{~mm}^{4}}{(100 \mathrm{~mm})^{0.25}}$
13) Nth Polar Moment of Inertia
$f \mathrm{x} \mathrm{J}_{\mathrm{n}}=\left(\frac{2 \cdot \pi}{\mathrm{n}+3}\right) \cdot\left(\mathrm{r}_{2}^{\mathrm{n}+3}-\mathrm{r}_{1}^{\mathrm{n}+3}\right)$
ex $1 \mathrm{E}^{\wedge} 9 \mathrm{~mm}^{4}=\left(\frac{2 \cdot \pi}{0.25+3}\right) \cdot\left((100 \mathrm{~mm})^{0.25+3}-(40 \mathrm{~mm})^{0.25+3}\right)$

Residual Stresses For Idealized Stress Strain Law ©

Residual Stresses for Non-Linear stress strain Law

Variables Used

- J_{n} Nth Polar Moment of Inertia (Millimeter ${ }^{4}$)
- \mathbf{n} Material Constant
- \mathbf{r}_{1} Inner Radius of Shaft (Millimeter)
- \mathbf{r}_{2} Outer Radius of Shaft (Millimeter)
- $\mathbf{T}_{\mathbf{e p}}$ Elasto Plastic Yielding Torque (Newton Millimeter)
- $\mathbf{T}_{\mathbf{f}}$ Full Yielding Torque (Newton Millimeter)
- $\mathbf{T}_{\mathbf{i}}$ Incipient Yielding Torque (Newton Millimeter)
- $\boldsymbol{\rho}$ Radius of Plastic Front (Millimeter)
- $\boldsymbol{\tau}_{\mathbf{0}}$ Yield Stress in Shear (Megapascal)
- $\boldsymbol{\tau}_{\text {nonlinear }}$ Yield Shear Stress(non-linear) (Megapascal)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Torque in Newton Millimeter ($\mathrm{N}^{*} \mathrm{~mm}$)

Torque Unit Conversion

- Measurement: Second Moment of Area in Millimeter ${ }^{4}\left(\mathrm{~mm}^{4}\right)$

Second Moment of Area Unit Conversion

- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion \longleftarrow

Check other formula lists

- Nonlinear Behavior of Beams Formulas
- Plastic Bending of Beams Formulas
- Residual Stresses for Non-Linear Stress Strain Relations Formulas
- Residual Stresses in Plastic Bending Formulas
- Torsion of Bars Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

