Jacketed Reaction Vessel Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Jacketed Reaction Vessel Formulas

Jacketed Reaction Vessel 튼

1) Channel Jacket Thickness
$f \times \mathrm{t}_{\mathrm{c}}=\mathrm{d} \cdot\left(\sqrt{\frac{0.12 \cdot \mathrm{p}_{\mathrm{j}}}{\mathrm{f}_{\mathrm{j}}}}\right)+\mathrm{c}$
ex $11.24085 \mathrm{~mm}=72.3 \mathrm{~mm} \cdot\left(\sqrt{\frac{0.12 \cdot 0.105 \mathrm{~N} / \mathrm{mm}^{2}}{120 \mathrm{~N} / \mathrm{mm}^{2}}}\right)+10.5 \mathrm{~mm}$
2) Combined Moment of Inertia of Shell and Stiffener per Unit Length
$f \times I_{\text {required }}=\frac{\mathrm{D}_{\mathrm{o}}^{2} \cdot \mathrm{~L}_{\text {eff }} \cdot\left(\mathrm{t}_{\text {jacketedreaction }}+\frac{\mathrm{A}_{\mathrm{s}}}{\mathrm{L}_{\text {eff }}}\right) \cdot \mathrm{f}_{\mathrm{j}}}{12 \cdot \mathrm{E}}$
Open Calculator
ex $1.2 \mathrm{E}^{\wedge} 14 \mathrm{~mm}^{4} / \mathrm{mm}=$
$\frac{(550 \mathrm{~mm})^{2} \cdot 330 \mathrm{~mm} \cdot\left(15 \mathrm{~mm}+\frac{1640 \mathrm{~mm}^{2}}{330 \mathrm{~mm}}\right) \cdot 120 \mathrm{~N} / \mathrm{mm}^{2}}{12 \cdot 170000 \mathrm{~N} / \mathrm{mm}^{2}}$
3) Cross Sectional Area of Stiffening Ring
$\mathrm{fx} \mathrm{A}_{\mathrm{s}}=\mathrm{W}_{\mathrm{s}} \cdot \mathrm{T}_{\mathrm{s}}$
ex $1640 \mathrm{~mm}^{2}=40 \mathrm{~mm} \cdot 41 \mathrm{~mm}$
4) Depth of Torisperical Head
$f \in h_{o}=R_{c}-\sqrt{\left(R_{c}-\frac{D_{o}}{2}\right) \cdot\left(R_{c}+\frac{D_{o}}{2}-2 \cdot R_{k}\right)}$
ex $73.10091 \mathrm{~mm}=1401 \mathrm{~mm}-\sqrt{\left(1401 \mathrm{~mm}-\frac{550 \mathrm{~mm}}{2}\right) \cdot\left(1401 \mathrm{~mm}+\frac{550 \mathrm{~mm}}{2}-2 \cdot 55 \mathrm{~mm}\right)}$
5) Design of Shell Thickness Subjected to Internal Pressure
$f \mathbf{x} \mathrm{t}_{\text {jacketedreaction }}=\frac{\mathrm{p} \cdot \mathrm{D}_{\mathrm{i}}}{\left(2 \cdot \mathrm{f}_{\mathrm{j}} \cdot \mathrm{J}\right)-(\mathrm{p})}+\mathrm{c}$
ex 14.3
6) Dished Head Thickness
$f \mathrm{x} \mathrm{t}_{\text {hdished }}=\left(\frac{\mathrm{p} \cdot \mathrm{R}_{\mathrm{c}} \cdot \mathrm{W}}{2 \cdot \mathrm{f}_{\mathrm{j}} \cdot \mathrm{J}}\right)+\mathrm{c}$
ex $81.92353 \mathrm{~mm}=\left(\frac{0.52 \mathrm{~N} / \mathrm{mm}^{2} \cdot 1401 \mathrm{~mm} \cdot 20}{2 \cdot 120 \mathrm{~N} / \mathrm{mm}^{2} \cdot 0.85}\right)+10.5 \mathrm{~mm}$
7) Jacket Width
$\mathrm{fx} \mathrm{w}_{\mathrm{j}}=\frac{\mathrm{D}_{\mathrm{ij}}-\mathrm{OD}_{\text {Vessel }}}{2}$
ex $50 \mathrm{~mm}=\frac{1100 \mathrm{~mm}-1000 \mathrm{~mm}}{2}$
8) Length of Shell for Jacket
$f \mathrm{f} \mathrm{L}_{\text {jacket }}=\mathrm{L}_{\mathrm{s}}+\frac{1}{3} \cdot \mathrm{~h}_{\mathrm{o}}$
ex $520.3333 \mathrm{~mm}=497 \mathrm{~mm}+\frac{1}{3} \cdot 70 \mathrm{~mm}$
9) Length of Shell under Combined Moment of Inertia
$f \mathrm{f} L=1.1 \cdot \sqrt{\mathrm{D}_{\mathrm{o}} \cdot \mathrm{t}_{\text {vessel }}}$
ex $89.36442 \mathrm{~mm}=1.1 \cdot \sqrt{550 \mathrm{~mm} \cdot 12 \mathrm{~mm}}$
10) Maximum Axial Stress in Coil at Junction with Shell
$f \mathbf{f} \mathrm{f}_{\mathrm{ac}}=\frac{\mathrm{p}_{\mathrm{j}} \cdot \mathrm{d}_{\mathrm{i}}}{\left(4 \cdot \mathrm{t}_{\text {coil }} \cdot \mathrm{J}_{\text {coil }}\right)+(2.5 \cdot \mathrm{t} \cdot \mathrm{J})}$
ex $0.012548 \mathrm{~N} / \mathrm{mm}^{2}=\frac{0.105 \mathrm{~N} / \mathrm{mm}^{2} \cdot 54 \mathrm{~mm}}{(4 \cdot 11.2 \mathrm{~mm} \cdot 0.6)+(2.5 \cdot 200 \mathrm{~mm} \cdot 0.85)}$
11) Maximum Equivalent Stress at Junction with Shell
$\mathrm{fx} \mathrm{f}_{\mathrm{e}}=\left(\sqrt{\left(\mathrm{f}_{\mathrm{as}}\right)^{2}+\left(\mathrm{f}_{\mathrm{cs}}\right)^{2}+\left(\mathrm{f}_{\mathrm{cc}}\right)^{2}-\left(\left(\mathrm{f}_{\mathrm{as}} \cdot \mathrm{f}_{\mathrm{cs}}\right)+\left(\mathrm{f}_{\mathrm{as}} \cdot \mathrm{f}_{\mathrm{cc}}\right)+\left(\mathrm{f}_{\mathrm{cc}} \cdot \mathrm{f}_{\mathrm{cs}}\right)\right)}\right)$
$2.005658 \mathrm{~N} / \mathrm{mm}^{2}=\left(\sqrt{\left(1.20 \mathrm{~N} / \mathrm{mm}^{2}\right)^{2}+\left(2.70 \mathrm{~N} / \mathrm{mm}^{2}\right)^{2}+\left(0.421875 \mathrm{~N} / \mathrm{mm}^{2}\right)^{2}-\left(\left(1.20 \mathrm{~N} / \mathrm{mm}^{2} \cdot 2.70 \mathrm{~N} / \mathrm{mm}^{2}\right)\right.}\right.$
12) Maximum Hoop Stress in Coil at Junction with Shell
$f \mathrm{fx} \mathrm{f}_{\mathrm{cc}}=\frac{\mathrm{p}_{\mathrm{j}} \cdot \mathrm{d}_{\mathrm{i}}}{2 \cdot \mathrm{t}_{\text {coil }} \cdot \mathrm{J}_{\text {coil }}}$
ex $0.421875 \mathrm{~N} / \mathrm{mm}^{2}=\frac{0.105 \mathrm{~N} / \mathrm{mm}^{2} \cdot 54 \mathrm{~mm}}{2 \cdot 11.2 \mathrm{~mm} \cdot 0.6}$
13) Required Plate Thickness for Dimple Jacket
$f \times \mathrm{t}_{\mathrm{j}(\text { minimum })}=$ Maximum $_{\text {Pitch }} \cdot \sqrt{\frac{\mathrm{p}_{\mathrm{j}}}{3 \cdot \mathrm{f}_{\mathrm{j}}}}$
ex $0.153704 \mathrm{~mm}=9 \mathrm{~mm} \cdot \sqrt{\frac{0.105 \mathrm{~N} / \mathrm{mm}^{2}}{3 \cdot 120 \mathrm{~N} / \mathrm{mm}^{2}}}$
14) Required Thickness for Jacket Closer Member with Jacket Width
$f \mathrm{x} \mathrm{t}_{\mathrm{rc}}=0.886 \cdot \mathrm{w}_{\mathrm{j}} \cdot \sqrt{\frac{\mathrm{p}_{\mathrm{j}}}{\mathrm{f}_{\mathrm{j}}}}$
ex $1.310412 \mathrm{~mm}=0.886 \cdot 50 \mathrm{~mm} \cdot \sqrt{\frac{0.105 \mathrm{~N} / \mathrm{mm}^{2}}{120 \mathrm{~N} / \mathrm{mm}^{2}}}$
15) Shell Thickness for Critical External Pressure
$f \times \mathrm{p}_{\mathrm{c}}=\frac{2.42 \cdot \mathrm{E}}{\left(1-(\mathrm{u})^{2}\right)^{\frac{3}{4}}} \cdot\left(\frac{\left(\frac{\mathrm{t}_{\text {vessel }}}{\mathrm{D}_{\mathrm{o}}}\right)^{\frac{5}{2}}}{\left(\frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{o}}}\right)-0.45 \cdot\left(\frac{\mathrm{t}_{\text {vessel }}}{\mathrm{D}_{\mathrm{o}}}\right)^{\frac{1}{2}}}\right)$
ex $319.5295 \mathrm{~N} / \mathrm{mm}^{2}=\frac{2.42 \cdot 170000 \mathrm{~N} / \mathrm{mm}^{2}}{\left(1-(0.3)^{2}\right)^{\frac{3}{4}}} \cdot\left(\frac{\left(\frac{12 \mathrm{~mm}}{550 \mathrm{~mm}}\right)^{\frac{5}{2}}}{\left(\frac{90 \mathrm{~mm}}{550 \mathrm{~mm}}\right)-0.45 \cdot\left(\frac{12 \mathrm{~mm}}{550 \mathrm{~mm}}\right)^{\frac{1}{2}}}\right)$
16) Thickness of Bottom Head subjected to Pressure
$f \mathrm{x} \mathrm{t}_{\mathrm{h}}=4.4 \cdot \mathrm{R}_{\mathrm{c}} \cdot\left(3 \cdot\left(1-(\mathrm{u})^{2}\right)\right)^{\frac{1}{4}} \cdot \sqrt{\frac{\mathrm{p}}{2 \cdot E}}$
ex $9.799269 \mathrm{~mm}=4.4 \cdot 1401 \mathrm{~mm} \cdot\left(3 \cdot\left(1-(0.3)^{2}\right)\right)^{\frac{1}{4}} \cdot \sqrt{\frac{0.52 \mathrm{~N} / \mathrm{mm}^{2}}{2 \cdot 170000 \mathrm{~N} / \mathrm{mm}^{2}}}$

17）Thickness of Half Coil Jacket

$f \mathrm{f} \mathrm{t}_{\text {coil }}=\frac{\mathrm{p}_{\mathrm{j}} \cdot \mathrm{d}_{\mathrm{i}}}{\left(2 \cdot \mathrm{f}_{\mathrm{j}} \cdot \mathrm{J}\right)}+\mathrm{c}$
ex $10.52779 \mathrm{~mm}=\frac{0.105 \mathrm{~N} / \mathrm{mm}^{2} \cdot 54 \mathrm{~mm}}{\left(2 \cdot 120 \mathrm{~N} / \mathrm{mm}^{2} \cdot 0.85\right)}+10.5 \mathrm{~mm}$
18）Thickness of Jacket Shell for Internal Pressure
$f x t_{r j}=\frac{p_{j} \cdot D_{i}}{\left(2 \cdot f_{j} \cdot J\right)-p_{j}}$
ex $0.772456 \mathrm{~mm}=\frac{0.105 \mathrm{~N} / \mathrm{mm}^{2} \cdot 1500 \mathrm{~mm}}{\left(2 \cdot 120 \mathrm{~N} / \mathrm{mm}^{2} \cdot 0.85\right)-0.105 \mathrm{~N} / \mathrm{mm}^{2}}$
19）Total Axial Stress in Vessel Shell 匹
$f \times f_{\mathrm{as}}=\left(\frac{\mathrm{p} \cdot \mathrm{D}_{\mathrm{i}}}{4 \cdot \mathrm{t} \cdot \mathrm{J}}\right)+\left(\frac{\mathrm{p}_{\mathrm{j}} \cdot \mathrm{d}_{\mathrm{i}}}{2 \cdot \mathrm{t} \cdot \mathrm{J}}\right)+\frac{2 \cdot \Delta \mathrm{p} \cdot\left(\mathrm{d}_{\mathrm{o}}\right)^{2}}{3 \cdot \mathrm{t}^{2}}$
ex $1.188542 \mathrm{~N} / \mathrm{mm}^{2}=\left(\frac{0.52 \mathrm{~N} / \mathrm{mm}^{2} \cdot 1500 \mathrm{~mm}}{4 \cdot 200 \mathrm{~mm} \cdot 0.85}\right)+\left(\frac{0.105 \mathrm{~N} / \mathrm{mm}^{2} \cdot 54 \mathrm{~mm}}{2 \cdot 200 \mathrm{~mm} \cdot 0.85}\right)+\frac{2 \cdot 0.4 \mathrm{~N} / \mathrm{mm}^{2} \cdot(61 \mathrm{~mm})^{2}}{3 \cdot(200 \mathrm{~mm})^{2}}$
20）Total Hoop Stress in Shell
$f x f_{\mathrm{cs}}=\frac{\mathrm{p}_{\text {shell }} \cdot D_{\mathrm{i}}}{2 \cdot \mathrm{t} \cdot \mathrm{J}}+\frac{\mathrm{p}_{\mathrm{j}} \cdot d_{\mathrm{i}}}{\left(4 \cdot \mathrm{t}_{\text {coil }} \cdot \mathrm{J}_{\text {coil }}\right)+(2.5 \cdot \mathrm{t} \cdot \mathrm{J})}$
ex $2.703724 \mathrm{~N} / \mathrm{mm}^{2}=\frac{0.61 \mathrm{~N} / \mathrm{mm}^{2} \cdot 1500 \mathrm{~mm}}{2 \cdot 200 \mathrm{~mm} \cdot 0.85}+\frac{0.105 \mathrm{~N} / \mathrm{mm}^{2} \cdot 54 \mathrm{~mm}}{(4 \cdot 11.2 \mathrm{~mm} \cdot 0.6)+(2.5 \cdot 200 \mathrm{~mm} \cdot 0.85)}$
21）Vessel Wall Thickness for Channel Type Jacket
$f \mathrm{x} \mathrm{t}_{\text {vessel }}=\mathrm{d} \cdot \sqrt{\frac{0.167 \cdot \mathrm{p}_{\mathrm{j}}}{\mathrm{f}_{\mathrm{j}}}}+\mathrm{c}$
ex $11.37398 \mathrm{~mm}=72.3 \mathrm{~mm} \cdot \sqrt{\frac{0.167 \cdot 0.105 \mathrm{~N} / \mathrm{mm}^{2}}{120 \mathrm{~N} / \mathrm{mm}^{2}}}+10.5 \mathrm{~mm}$

Variables Used

- $\mathbf{A}_{\mathbf{s}}$ Cross Sectional Area of Stiffening Ring (Square Millimeter)
- c Corrosion Allowance (Millimeter)
- d Design Length of Channel Section (Millimeter)
- $\mathbf{d}_{\mathbf{i}}$ Internal Diameter of Half Coil (Millimeter)
- $\mathbf{D}_{\mathbf{i}}$ Internal Diameter of Shell (Millimeter)
- \mathbf{D}_{ij} Inside Diameter of Jacket (Millimeter)
- $\mathbf{d}_{\mathbf{o}}$ Outer Diameter of Half Coil (Millimeter)
- $\mathbf{D}_{\mathbf{o}}$ Vessel Shell Outer Diameter (Millimeter)
- E Modulus of Elasticity Jacketed Reaction Vessel (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{a c}}$ Maximum Axial Stress in Coil at Junction (Newton per Square Millimeter)
- $\mathbf{f a s}_{\text {as }}$ Total Axial Stress (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{c c}}$ Maximum Hoop Stress in Coil at Junction with Shell (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{c s}}$ Total Hoop Stress (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{e}}$ Maximum Equivalent Stress at Junction with Shell (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{j}}$ Allowable Stress for Jacket Material (Newton per Square Millimeter)
- $\mathbf{h}_{\mathbf{o}}$ Depth of Head (Millimeter)
- Irequired Combined Moment of Inertia of Shell and Stiffener (Millimeter ${ }^{4}$ per Millimeter)
- J Joint Efficiency for Shell
- Jcoil Weld Joint Efficiency Factor for Coil
- L Length of Shell (Millimeter)
- Leff Effective Length Between Stiffeners (Millimeter)
- $\mathrm{L}_{\text {jacket }}$ Length of Shell for Jacket (Millimeter)
- $\mathrm{L}_{\mathbf{s}}$ Length of Straight Side Jacket (Millimeter)
- Maximum ${ }_{\text {Pitch }}$ Maximum Pitch between Steam Weld Centre Lines (Millimeter)
- OD Vessel Outer Diameter of Vessel (Millimeter)
- p Internal Pressure in Vessel (Newton per Square Millimeter)
- $\mathbf{p}_{\mathbf{c}}$ Critical External Pressure (Newton per Square Millimeter)
- $\mathbf{p}_{\mathbf{j}}$ Design Jacket Pressure (Newton per Square Millimeter)
- $\mathbf{P}_{\text {shell }}$ Design Pressure Shell (Newton per Square Millimeter)
- $\mathbf{R}_{\mathbf{c}}$ Crown Radius for Jacketed Reaction Vessel (Millimeter)
- $\mathbf{R}_{\mathbf{k}}$ Knuckle Radius (Millimeter)
- t Shell Thickness (Millimeter)
- $\mathbf{t}_{\mathbf{c}}$ Channel Wall Thickness (Millimeter)
- $\mathbf{t}_{\text {coil }}$ Thickness of Half Coil Jacket (Millimeter)
- $\mathbf{t}_{\mathbf{h}}$ Head Thickness (Millimeter)
- $t_{\text {hdished }}$ Dished Head Thickness (Millimeter)
- $\mathbf{t}_{\mathbf{j}}$ (minimum) Required Thickness of Dimple Jacket (Millimeter)
- $\mathbf{t}_{\text {jacketedreaction }}$ Shell Thickness for Jackted Reaction Vessel (Millimeter)
- $\mathbf{t}_{\mathbf{r c}}$ Required Thickness for Jacket Closer Member (Millimeter)
- t_{rj} Required Thickness of Jacket (Millimeter)
- $\mathbf{T}_{\mathbf{s}}$ Thickness of Stiffener (Millimeter)
- $\mathbf{t}_{\text {vessel }}$ Vessel Thickness (Millimeter)
- u Poisson Ratio
- W Stress Intensification Factor
- $\mathbf{w}_{\mathbf{j}}$ Jacket Width (Millimeter)
- $\mathbf{W}_{\mathbf{s}}$ Width of Stiffener (Millimeter)
- $\Delta \mathbf{p}$ Maximum difference between Coil and Shell Pressure (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Area in Square Millimeter (mm^{2})

Area Unit Conversion

- Measurement: Pressure in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$)

Pressure Unit Conversion

- Measurement: Moment of Inertia per Unit Length in Millimeter ${ }^{4}$ per Millimeter ($\mathrm{mm}^{4} / \mathrm{mm}$)

Moment of Inertia per Unit Length Unit Conversion

- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Jacketed Reaction Vessel Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

