Moments, Loads, Angles acting on Steering system and Axles Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 21 Moments, Loads, Angles acting on Steering system and Axles Formulas

Moments, Loads, Angles acting on Steering system and Axles ©

1) Centripetal Acceleration during Cornering
$f \mathrm{f} \mathrm{a}_{\mathrm{c}}=\frac{\mathrm{v}_{\mathrm{t}} \cdot \mathrm{v}_{\mathrm{t}}}{\mathrm{R}}$
ex $400 \mathrm{~m} / \mathrm{s}^{2}=\frac{60 \mathrm{~m} / \mathrm{s} \cdot 60 \mathrm{~m} / \mathrm{s}}{9 \mathrm{~m}}$
2) Characteristic Speed for Understeer Vehicles
$f \mathrm{f} \mathrm{v}_{\mathrm{u}}=\sqrt{\frac{57.3 \cdot \mathrm{~L} \cdot \mathrm{~g}}{\mathrm{~K}}}$
ex $913.9383 \mathrm{~m} / \mathrm{s}=\sqrt{\frac{57.3 \cdot 2.7 \mathrm{~m} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}{0.104^{\circ}}}$
3) Critical Speed for Oversteer Vehicle $\mathbb{\square}$
$f x v_{0}=-\sqrt{\frac{57.3 \cdot \mathrm{~L} \cdot \mathrm{~g}}{\mathrm{~K}}}$
ex $-913.9383 \mathrm{~m} / \mathrm{s}=-\sqrt{\frac{57.3 \cdot 2.7 \mathrm{~m} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}{0.104^{\circ}}}$
4) Driveline Torque
fx $\mathrm{T}_{\mathrm{d}}=\mathrm{F}_{\mathrm{x}} \cdot \mathrm{R}_{\mathrm{e}}$
ex $157.5 \mathrm{~N}^{*} \mathrm{~m}=450 \mathrm{~N} \cdot 0.35 \mathrm{~m}$
5) Front Slip Angle at High Cornering Speed
$f \mathrm{x} \alpha_{\mathrm{f}}=\beta+\left(\left(\frac{\mathrm{a} \cdot \mathrm{r}}{\mathrm{v}_{\mathrm{t}}}\right)-\delta\right)$
ex $0.77^{\circ}=0.34^{\circ}+\left(\left(\frac{1.8 \mathrm{~m} \cdot 25 \mathrm{degree} / \mathrm{s}}{60 \mathrm{~m} / \mathrm{s}}\right)-0.32^{\circ}\right)$
6) Lateral Acceleration during Cornering of Car
$\mathrm{fx} \mathrm{A}_{\alpha}=\frac{\mathrm{a}_{\mathrm{c}}}{\mathrm{g}}$
ex $40.91837 \mathrm{~m} / \mathrm{s}^{2}=\frac{401 \mathrm{~m} / \mathrm{s}^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}$
7) Load on Front Axle at High Speed Cornering
$\mathrm{fx} \mathrm{W}_{\mathrm{fl}}=\frac{\mathrm{W} \cdot \mathrm{b}}{\mathrm{L}}$
ex $1481.481 \mathrm{~N}=\frac{20000 \mathrm{~N} \cdot 0.2 \mathrm{~m}}{2.7 \mathrm{~m}}$
8) Load on Rear Axle at High Speed Cornering
$f \mathrm{~F} \mathrm{~W}_{\mathrm{r}}=\frac{\mathrm{W} \cdot \mathrm{a}}{\mathrm{L}}$
ex $13333.33 \mathrm{~N}=\frac{20000 \mathrm{~N} \cdot 1.8 \mathrm{~m}}{2.7 \mathrm{~m}}$
9) Rear Slip Angle due to High Speed Cornering
$f \mathrm{f} \alpha_{\mathrm{r}}=\beta-\left(\frac{\mathrm{b} \cdot \mathrm{r}}{\mathrm{v}_{\mathrm{t}}}\right)$
ex
$0.256667^{\circ}=0.34^{\circ}-\left(\frac{0.2 \mathrm{~m} \cdot 25 \text { degree } / \mathrm{s}}{60 \mathrm{~m} / \mathrm{s}}\right)$
10) Self Aligning Moment or Torque on Wheels
$f \mathbf{x} \mathrm{M}_{\mathrm{at}}=\left(\mathrm{M}_{\mathrm{zl}}+\mathrm{M}_{\mathrm{zr}}\right) \cdot \cos \left(\lambda_{\mathrm{l}}\right) \cdot \cos (v)$
ex $100.1407 \mathrm{~N}^{*} \mathrm{~m}=\left(27 \mathrm{~N}^{*} \mathrm{~m}+75 \mathrm{~N}^{*} \mathrm{~m}\right) \cdot \cos \left(10^{\circ}\right) \cdot \cos \left(4.5^{\circ}\right)$
11) Track Width of Vehicle using Ackermann Condition
$f \mathbf{f x} \mathrm{a}_{\mathrm{tw}}=\left(\cot \left(\delta_{\mathrm{o}}\right)-\cot \left(\delta_{\mathrm{i}}\right)\right) \cdot \mathrm{L}$
ex $1.99783 \mathrm{~m}=\left(\cot \left(16^{\circ}\right)-\cot \left(20^{\circ}\right)\right) \cdot 2.7 \mathrm{~m}$

Angles Acting on Steering System and Axles ©

12) Angle of Inside Lock given Turning Radius of Inner Front Wheel
$\mathrm{fx} \theta=a \sin \left(\frac{\mathrm{~L}}{\mathrm{R}_{\mathrm{IF}}+\frac{\mathrm{a}_{\mathrm{tw}}-\mathrm{c}}{2}}\right)$
ex $43.33298^{\circ}=a \sin \left(\frac{2.7 \mathrm{~m}}{3 \mathrm{~m}+\frac{1.999 \mathrm{~m}-0.13 \mathrm{~m}}{2}}\right)$
13) Angle of Inside Lock given Turning Radius of Inner Rear Wheel
$f \mathbf{f x} \theta=a \tan \left(\frac{\mathrm{~L}}{\mathrm{R}_{\mathrm{IR}}+\frac{\mathrm{a}_{\mathrm{tw}}-\mathrm{c}}{2}}\right)$
ex $43.00884^{\circ}=a \tan \left(\frac{1.96 m}{1.96}\right.$
14) Angle of Inside Wheel Lock S
fx $\theta=a \cot \left(\cot (\varphi)-\frac{\mathrm{c}}{\mathrm{L}}\right)$
ex $42.99248^{\circ}=a \cot \left(\cot \left(41.74^{\circ}\right)-\frac{0.13 \mathrm{~m}}{2.7 \mathrm{~m}}\right)$
15) Angle of Outside Lock given Turning Radius of Outer Front Wheel
$\varphi=a \sin \left(\frac{\mathrm{~L}}{\mathrm{R}_{\mathrm{OF}}-\frac{a_{\mathrm{tw}}-\mathrm{c}}{2}}\right)$
ex $41.74085^{\circ}=a \sin \left(\frac{2.7 \mathrm{~m}}{4.99 \mathrm{~m}-\frac{1.999 \mathrm{~m}-0.13 \mathrm{~m}}{2}}\right)$
16) Angle of Outside Lock given Turning Radius of Outer Rear Wheel
$\mathrm{fx} \varphi=a \tan \left(\frac{\mathrm{~L}}{\mathrm{R}_{\mathrm{OR}}-\frac{\mathrm{a}_{\mathrm{tw}}-\mathrm{c}}{2}}\right)$
ex $41.74618^{\circ}=a \tan \left(\frac{2.7 \mathrm{~m}}{3.96 \mathrm{~m}-\frac{1.999 \mathrm{~m}-0.13 \mathrm{~m}}{2}}\right)$
17) Angle of Outside Wheel Lock Satisfying Correct Steering Condition
$\mathbf{f x} \varphi=a \cot \left(\cot (\theta)+\frac{\mathrm{c}}{\mathrm{L}}\right)$
ex $41.74717^{\circ}=a \cot \left(\cot \left(43^{\circ}\right)+\frac{0.13 \mathrm{~m}}{2.7 \mathrm{~m}}\right)$

Moments Acting on Steering System and Axles

18) Moment about Steeraxis due to Driveline Torque
fa $M_{\text {sa }}=F_{x} \cdot\left(\left(d \cdot \cos (v) \cdot \cos \left(\lambda_{1}\right)\right)+\left(R_{e} \cdot \sin \left(\lambda_{1}+\zeta\right)\right)\right)$
ex $170.3342 \mathrm{~N}^{*} \mathrm{~m}=450 \mathrm{~N} \cdot\left(\left(0.21 \mathrm{~m} \cdot \cos \left(4.5^{\circ}\right) \cdot \cos \left(10^{\circ}\right)\right)+\left(0.35 \mathrm{~m} \cdot \sin \left(10^{\circ}+19.5^{\circ}\right)\right)\right)$
19) Moment Arising due to Lateral Forces on Wheels during Steering
fx $\mathrm{M}_{\mathrm{l}}=\left(\mathrm{F}_{\mathrm{yl}}+\mathrm{F}_{\mathrm{yr}}\right) \cdot \mathrm{R}_{\mathrm{e}} \cdot \tan (v)$
Open Calculator
ex $28.37197 \mathrm{~N}^{*} \mathrm{~m}=(510 \mathrm{~N}+520 \mathrm{~N}) \cdot 0.35 \mathrm{~m} \cdot \tan \left(4.5^{\circ}\right)$
20) Moment Arising from Traction Force on Wheels during Steering
$f \mathrm{x} \mathrm{M}_{\mathrm{t}}=\left(\mathrm{F}_{\mathrm{xl}}-\mathrm{F}_{\mathrm{xr}}\right) \cdot \mathrm{d}_{\mathrm{L}}$
ex $4 N^{*} \mathrm{~m}=(500 \mathrm{~N}-400 \mathrm{~N}) \cdot 0.04 \mathrm{~m}$
21) Moment due to Vertical Force on Wheels during Steering
$f \mathbf{f} \mathrm{M}_{\mathrm{v}}=\left(\left(\mathrm{F}_{\mathrm{zl}}-\mathrm{F}_{\mathrm{zr}}\right) \cdot \mathrm{d}_{\mathrm{L}} \cdot \sin (\mathrm{v}) \cdot \cos (\delta)\right)-\left(\left(\mathrm{F}_{\mathrm{zl}}+\mathrm{F}_{\mathrm{zr}}\right) \cdot \mathrm{d}_{\mathrm{L}} \cdot \sin \left(\lambda_{\mathrm{l}}\right) \cdot \sin (\delta)\right)$
ex
$0.108424 \mathrm{~N}^{*} \mathrm{~m}=\left((650 \mathrm{~N}-600 \mathrm{~N}) \cdot 0.04 \mathrm{~m} \cdot \sin \left(4.5^{\circ}\right) \cdot \cos \left(0.32^{\circ}\right)\right)-\left((650 \mathrm{~N}+600 \mathrm{~N}) \cdot 0.04 \mathrm{~m} \cdot \sin \left(10^{\circ}\right) \cdot \sin (0\right.$

Variables Used

- a Distance of c.g from Front Axle (Meter)
- $\mathbf{a}_{\mathbf{c}}$ Centripetal Acceleration during Cornering (Meter per Square Second)
- a_{tw} Track Width of Vehicle (Meter)
- $\mathbf{A}_{\boldsymbol{\alpha}}$ Horizontal Lateral Acceleration (Meter per Square Second)
- b Distance of c.g from Rear Axle (Meter)
- c Distance between Front Wheel Pivot Center (Meter)
- d Distance between Steeraxis and Tire center (Meter)
- \mathbf{d}_{L} Lateral Offset at Ground (Meter)
- $\mathbf{F}_{\mathbf{x}}$ Tractive Force (Newton)
- $\mathbf{F}_{\mathbf{x l}}$ Tractive Force on Left Wheels (Newton)
- $\mathrm{F}_{\mathbf{x r}}$ Tractive Force on Right Wheels (Newton)
- F_{yl} Lateral Force on Left Wheels (Newton)
- F_{yr} Lateral Force on Right Wheels (Newton)
- $\mathrm{F}_{\mathbf{z l}}$ Vertical Load on Left Wheels (Newton)
- $\mathrm{F}_{\mathbf{z r}}$ Vertical Load on Right Wheels (Newton)
- g Acceleration due to Gravity (Meter per Square Second)
- K Understeer Gradient (Degree)
- L Wheelbase of Vehicle (Meter)
- $\mathbf{M}_{\mathbf{a t}}$ Self Aligning Moment (Newton Meter)
- $\mathbf{M}_{\mathbf{I}}$ Moment on Wheels Arising from Lateral Force (Newton Meter)
- $\mathbf{M}_{\mathbf{s a}}$ Moment about Steeraxis due to Driveline Torque (Newton Meter)
- $\mathbf{M}_{\mathbf{t}}$ Moment Arising from Traction Force (Newton Meter)
- $\mathbf{M}_{\mathbf{V}}$ Moment arising from Vertical Forces on Wheels (Newton Meter)
- $\mathbf{M}_{\mathbf{z} \mathbf{I}}$ Aligning Moment Acting on Left Tires (Newton Meter)
- $\mathbf{M}_{\mathbf{z r}}$ Aligning Moment on Right Tires (Newton Meter)
- r Yaw Velocity (Degree per Second)
- R Radius of Turn (Meter)
- $\mathbf{R}_{\mathbf{e}}$ Radius of Tire (Meter)
- \mathbf{R}_{IF} Turning Radius of Inner Front Wheel (Meter)
- $\mathbf{R}_{\mathbf{I R}}$ Turning Radius of Rear Inner Wheel (Meter)
- R $\mathbf{R O F}_{\text {OF }}$ Turning Radius of Outer Front Wheel (Meter)
- $\mathbf{R}_{\mathbf{O R}}$ Turning Radius of Outer Rear Wheel (Meter)
- $\mathbf{T}_{\mathbf{d}}$ Driveline Torque (Newton Meter)
- $\mathbf{v}_{\mathbf{o}}$ Critical Speed for Oversteer Vehicles (Meter per Second)
- $\mathbf{v}_{\mathbf{t}}$ Total Velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{u}}$ Characteristic Speed for Understeer Vehicles (Meter per Second)
- W Total Load of Vehicle (Newton)
- \mathbf{W}_{fl} Load on Front Axle at High Speed Cornering (Newton)
- Wr Load on Rear Axle at High Speed Cornering (Newton)
- $\boldsymbol{\alpha}_{\mathbf{f}}$ Slip Angle of Front Wheel (Degree)
- $\boldsymbol{\alpha}_{\mathbf{r}}$ Slip Angle of Rear Wheel (Degree)
- $\boldsymbol{\beta}$ Vehicle Body Slip Angle (Degree)
- $\bar{\delta}$ Steer Angle (Degree)
- $\delta_{\mathbf{i}}$ Steering Angle Inner Wheel (Degree)
- $\delta_{\mathbf{o}}$ Steering Angle Outer Wheel (Degree)
- ζ Angle made by Front Axle with Horizontal (Degree)
- $\boldsymbol{\theta}$ Angle of Inside Wheel Lock (Degree)
- $\boldsymbol{\lambda}_{\mathrm{I}}$ Lateral Inclination Angle (Degree)
- v Caster Angle (Degree)
- φ Angle of Outside Wheel Lock (Degree)

Constants, Functions, Measurements used

- Function: acot, acot(Number)

Inverse trigonometric cotangent function

- Function: asin, asin(Number)

Inverse trigonometric sine function

- Function: atan, atan(Number)

Inverse trigonometric tangent function

- Function: cos, \cos (Angle)

Trigonometric cosine function

- Function: cot, $\cot ($ Angle)

Trigonometric cotangent function

- Function: $\mathbf{s i n}, \sin ($ Angle)

Trigonometric sine function

- Function: sqrt, sqrt(Number)

Square root function

- Function: $\boldsymbol{t a n}, \tan ($ Angle)

Trigonometric tangent function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Speed in Meter per Second (m / s)

Speed Unit Conversion

- Measurement: Acceleration in Meter per Square Second ($\mathrm{m} / \mathrm{s}^{2}$)

Acceleration Unit Conversion

U

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion【

- Measurement: Angular Velocity in Degree per Second (degree/s)

Angular Velocity Unit Conversion

- Measurement: Torque in Newton Meter ($\mathrm{N}^{*} \mathrm{~m}$)

Torque Unit Conversion

Check other formula lists

- Moments, Loads, Angles acting on Steering system • Pivot Centre, Wheel Base and Track Formulas and Axles Formulas
- Steering System Formulas
- Movement Ratio Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

