

Moments, Loads, Angles acting on Steering system and Axles Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 21 Moments, Loads, Angles acting on Steering system and Axles Formulas

Moments, Loads, Angles acting on Steering system and Axles 🖉

1) Centripetal Acceleration during Cornering C
(a)
$$a_c = \frac{v_t \cdot v_t}{R}$$

(Deen Calculator (S)
(a) $400m/s^2 = \frac{60m/s \cdot 60m/s}{9m}$
2) Characteristic Speed for Understeer Vehicles (
(a) $v_u = \sqrt{\frac{57.3 \cdot L \cdot g}{K}}$
(Deen Calculator (S)
(c) $v_u = \sqrt{\frac{57.3 \cdot 2.7m \cdot 9.8m/s^2}{0.104^*}}$
3) Critical Speed for Oversteer Vehicle (
(c) $v_o = -\sqrt{\frac{57.3 \cdot L \cdot g}{K}}$
(Deen Calculator (S)
(c) $v_o = -\sqrt{\frac{57.3 \cdot L \cdot g}{K}}$
(c) $v_o = -\sqrt{\frac{57.3 \cdot L \cdot g}{K}}$
(c) $v_o = -\sqrt{\frac{57.3 \cdot L \cdot g}{K}}$
(c) $v_o = -\sqrt{\frac{57.3 \cdot 2.7m \cdot 9.8m/s^2}{0.104^*}}$
4) Driveline Torque (
(c) $T_d = F_x \cdot R_e$)
(c) $157.5N^*m = 450N \cdot 0.35m$
5) Front Slip Angle at High Cornering Speed (
(c) $a_t = \beta + \left(\left(\frac{a \cdot r}{v_t}\right) - \delta\right)$
(c) $0.77^* = 0.34^* + \left(\left(\frac{1.8m \cdot 25degree/s}{60m/s}\right) - 0.32^*\right)$

3/9

Angles Acting on Steering System and Axles C

12) Angle of Inside Lock given Turning Radius of Inner Front Wheel 🕑

$$\begin{aligned} & \widehat{\mathbf{K}} \ \widehat{\mathbf{\theta}} = a \sin \left(\frac{\mathbf{L}}{\mathbf{R}_{\mathrm{IF}} + \frac{\mathbf{a}_{\mathrm{tw}} - \mathbf{c}}{2}} \right) \end{aligned} \tag{Qpen Calculator Constraints} \\ & \widehat{\mathbf{M}} \ \widehat{\mathbf{M}} = a \sin \left(\frac{2.7 \mathrm{m}}{3 \mathrm{m} + \frac{1.999 \mathrm{m} - 0.13 \mathrm{m}}{2}} \right) \end{aligned}$$

13) Angle of Inside Lock given Turning Radius of Inner Rear Wheel 🗹

14) Angle of Inside Wheel Lock Satisfying Correct Steering Condition 🕑

$$\begin{aligned} \mathbf{fx} & \theta = a \cot\left(\cot(\phi) - \frac{c}{L}\right) \end{aligned} \tag{Open Calculator } \mathbf{fx} \end{aligned}$$

15) Angle of Outside Lock given Turning Radius of Outer Front Wheel

$$\begin{aligned} \mathbf{fz} \ \varphi &= a \sin\left(\frac{\mathrm{L}}{\mathrm{R}_{\mathrm{OF}} - \frac{\mathrm{a}_{\mathrm{tw}} - \mathrm{c}}{2}}\right) \end{aligned} \\ \mathbf{ex} \ 41.74085^{\circ} &= a \sin\left(\frac{2.7\mathrm{m}}{4.99\mathrm{m} - \frac{1.999\mathrm{m} - 0.13\mathrm{m}}{2}}\right) \end{aligned}$$

16) Angle of Outside Lock given Turning Radius of Outer Rear Wheel

$$\begin{aligned} & \mathbf{fz} \ \mathbf{\phi} = a \tan \left(\frac{\mathrm{L}}{\mathrm{R_{OR}} - \frac{\mathrm{a_{tw}} - \mathrm{c}}{2}} \right) \end{aligned} \\ & \mathbf{ex} \end{aligned} \\ & \mathbf{41.74618}^{\circ} = a \tan \left(\frac{2.7\mathrm{m}}{3.96\mathrm{m} - \frac{1.999\mathrm{m} - 0.13\mathrm{m}}{2}} \right) \end{aligned}$$

Open Calculator

Open Calculator

Variables Used

- a Distance of c.g from Front Axle (Meter)
- a_c Centripetal Acceleration during Cornering (Meter per Square Second)
- atw Track Width of Vehicle (Meter)
- A_α Horizontal Lateral Acceleration (Meter per Square Second)
- b Distance of c.g from Rear Axle (Meter)
- C Distance between Front Wheel Pivot Center (Meter)
- d Distance between Steeraxis and Tire center (Meter)
- dL Lateral Offset at Ground (Meter)
- F_x Tractive Force (Newton)
- F_{xl} Tractive Force on Left Wheels (Newton)
- Fxr Tractive Force on Right Wheels (Newton)
- F_{vl} Lateral Force on Left Wheels (Newton)
- Fvr Lateral Force on Right Wheels (Newton)
- F_{zl} Vertical Load on Left Wheels (Newton)
- Fzr Vertical Load on Right Wheels (Newton)
- g Acceleration due to Gravity (Meter per Square Second)
- K Understeer Gradient (Degree)
- L Wheelbase of Vehicle (Meter)
- Mat Self Aligning Moment (Newton Meter)
- MI Moment on Wheels Arising from Lateral Force (Newton Meter)
- Msa Moment about Steeraxis due to Driveline Torque (Newton Meter)
- Mt Moment Arising from Traction Force (Newton Meter)
- M_v Moment arising from Vertical Forces on Wheels (Newton Meter)
- M_{zl} Aligning Moment Acting on Left Tires (Newton Meter)
- Mzr Aligning Moment on Right Tires (Newton Meter)
- Yaw Velocity (Degree per Second)
- R Radius of Turn (Meter)
- Re Radius of Tire (Meter)
- RIF Turning Radius of Inner Front Wheel (Meter)
- RIR Turning Radius of Rear Inner Wheel (Meter)
- R_{OF} Turning Radius of Outer Front Wheel (Meter)
- R_{OR} Turning Radius of Outer Rear Wheel (Meter)
- T_d Driveline Torque (Newton Meter)

7/9

- Vo Critical Speed for Oversteer Vehicles (Meter per Second)
- Vt Total Velocity (Meter per Second)
- V_u Characteristic Speed for Understeer Vehicles (Meter per Second)
- W Total Load of Vehicle (Newton)
- W_{fl} Load on Front Axle at High Speed Cornering (Newton)
- W_r Load on Rear Axle at High Speed Cornering (Newton)
- α_f Slip Angle of Front Wheel (Degree)
- α_r Slip Angle of Rear Wheel (Degree)
- β Vehicle Body Slip Angle (Degree)
- δ Steer Angle (Degree)
- + $\boldsymbol{\delta}_{i}$ Steering Angle Inner Wheel (Degree)
- + δ_0 Steering Angle Outer Wheel (Degree)
- ζ Angle made by Front Axle with Horizontal (Degree)
- $\boldsymbol{\theta}$ Angle of Inside Wheel Lock (Degree)
- λ_l Lateral Inclination Angle (Degree)
- V Caster Angle (Degree)
- φ Angle of Outside Wheel Lock (Degree)

Constants, Functions, Measurements used

- Function: acot, acot(Number) Inverse trigonometric cotangent function
- Function: asin, asin(Number) Inverse trigonometric sine function
- Function: atan, atan(Number) Inverse trigonometric tangent function
- Function: cos, cos(Angle) Trigonometric cosine function
- Function: cot, cot(Angle) Trigonometric cotangent function
- Function: **sin**, sin(Angle) *Trigonometric sine function*
- Function: sqrt, sqrt(Number) Square root function
- Function: tan, tan(Angle) Trigonometric tangent function
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²) Acceleration Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Angular Velocity in Degree per Second (degree/s) Angular Velocity Unit Conversion
- Measurement: Torque in Newton Meter (N*m) Torque Unit Conversion

Check other formula lists

- Moments, Loads, Angles acting on Steering system
 Pivot Centre, Wheel Base and Track Formulas and Axles Formulas Steering System Formulas • Turning Radius Formulas
 - Movement Ratio Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/22/2023 | 11:25:05 PM UTC

Please leave your feedback here ...

