unitsconverters.com

Consecutive Reactions Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 9 Consecutive Reactions Formulas

Consecutive Reactions 전

1) Conc. of Intermediate B provided Reactant A Conc. at time t given k2 much greater than $k 1$
$f \mathbf{f x}[\mathrm{~B}]=\mathrm{A} \cdot\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}-\mathrm{k}_{1}}\right)$
ex $0.064386 \mathrm{~mol} / \mathrm{L}=101 \mathrm{~mol} / \mathrm{L} \cdot\left(\frac{0.00000567 \mathrm{~s}^{-1}}{0.0089 \mathrm{~s}^{-1}-0.00000567 \mathrm{~s}^{-1}}\right)$
2) Concentration of Intermediate B in First Order Consecutive Reaction
fx $[B]=A_{0} \cdot\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}-\mathrm{k}_{1}}\right) \cdot\left(\exp \left(-\mathrm{k}_{1} \cdot \mathrm{t}\right)-\exp \left(-\mathrm{k}_{2} \cdot \mathrm{t}\right)\right)$
ex
$0.06246 \mathrm{~mol} / \mathrm{L}=100 \mathrm{~mol} / \mathrm{L} \cdot\left(\frac{0.00000567 \mathrm{~s}^{-1}}{0.0089 \mathrm{~s}^{-1}-0.00000567 \mathrm{~s}^{-1}}\right) \cdot\left(\exp \left(-0.00000567 \mathrm{~s}^{-1} \cdot 3600 \mathrm{~s}\right)-\exp \left(-0.0089 \mathrm{~s}^{-1}\right.\right.$.
3) Concentration of Product C in First Order Consecutive Reaction
$\mathrm{fx}[\mathrm{C}]=\mathrm{A}_{0} \cdot\left(1-\left(\frac{1}{\mathrm{k}_{2}-\mathrm{k}_{1}} \cdot\left(\mathrm{k}_{2} \cdot\left(\exp \left(-\mathrm{k}_{1} \cdot \mathrm{t}\right)-\mathrm{k}_{1} \cdot \exp \left(-\mathrm{k}_{2} \cdot \mathrm{t}\right)\right)\right)\right)\right)$
$1.958048 \mathrm{~mol} / \mathrm{L}=100 \mathrm{~mol} / \mathrm{L} \cdot\left(1-\left(\frac{1}{0.0089 \mathrm{~s}^{-1}-0.00000567 \mathrm{~s}^{-1}} \cdot\left(0.0089 \mathrm{~s}^{-1} \cdot\left(\exp \left(-0.00000567 \mathrm{~s}^{-1} \cdot 3600 \mathrm{~s}\right)-\right.\right.\right.\right.$
4) Concentration of Product \mathbf{C} when $\mathbf{k} 2$ much greater than k 1 in 1st Order Consecutive Reaction
$f \mathbf{f x}[\mathrm{C}]=\mathrm{A}_{0} \cdot\left(1-\exp \left(-\mathrm{k}_{1} \cdot \mathrm{t}\right)\right)$
ex $2.020509 \mathrm{~mol} / \mathrm{L}=100 \mathrm{~mol} / \mathrm{L} \cdot\left(1-\exp \left(-0.00000567 \mathrm{~s}^{-1} \cdot 3600 \mathrm{~s}\right)\right)$
5) Concentration of Reactant A in First Order Consecutive Reaction
$f \mathrm{fx} A=\mathrm{A}_{0} \cdot \exp \left(-\mathrm{k}_{1} \cdot \mathrm{t}\right)$
ex $97.97949 \mathrm{~mol} / \mathrm{L}=100 \mathrm{~mol} / \mathrm{L} \cdot \exp \left(-0.00000567 \mathrm{~s}^{-1} \cdot 3600 \mathrm{~s}\right)$
6) Maximum Concentration of Intermediate B in First Order Consecutive Reaction
$f x[B]=A_{0} \cdot\left(\frac{k_{2}}{k_{1}}\right)^{\frac{k_{2}}{k_{1}-k_{2}}}$
ex $0.06341 \mathrm{~mol} / \mathrm{L}=100 \mathrm{~mol} / \mathrm{L} \cdot\left(\frac{0.0089 \mathrm{~s}^{-1}}{0.00000567 \mathrm{~s}^{-1}}\right)^{\frac{0.0889 s^{-1}}{0.00000567 \mathrm{~s}^{-5}-0.089 \mathrm{~s}^{-1}}}$
7) Secular Eqm- Ratio of Conc. of A to B given of half-lives provided k2 much greater than k1
$f \times R_{A: B}=\frac{t_{1 / 2, B}}{t_{1 / 2, \mathrm{~A}}}$
ex $0.8=\frac{800 \mathrm{~s}}{1000 \mathrm{~s}}$
8) Time required to form Maximum Concentration of Intermediate B in First Order Consecutive Reaction
$f \mathrm{f} \quad \mathrm{t}_{\operatorname{maxB}}=\frac{1}{\mathrm{k}_{1}-\mathrm{k}_{2}} \cdot \ln \left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\right)$
ex $827.338 \mathrm{~s}=\frac{1}{0.00000567 \mathrm{~s}^{-1}-0.0089 \mathrm{~s}^{-1}} \cdot \ln \left(\frac{0.00000567 \mathrm{~s}^{-1}}{0.0089 \mathrm{~s}^{-1}}\right)$
9) Transient Eqm- Ratio of B by A when k2 much greater than k1 for 1 st Order Consecutive Rxn
$f \mathrm{f} \mathrm{R}_{\mathrm{B}: \mathrm{A}}=\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}-\mathrm{k}_{1}}$
ex $0.000637=\frac{0.00000567 \mathrm{~s}^{-1}}{0.0089 \mathrm{~s}^{-1}-0.00000567 \mathrm{~s}^{-1}}$

Variables Used

- [B] Concentration of B at Time t (Mole per Liter)
- [C] Concentration of C at Time t (Mole per Liter)
- A Concentration of A at Time t (Mole per Liter)
- $\mathbf{A}_{\mathbf{0}}$ Initial Concentration of Reactant A (Mole per Liter)
- \mathbf{k}_{1} Reaction Rate Constant 1 (1 Per Second)
- $\mathbf{k}_{\mathbf{2}}$ Rate Constant of Reaction 2 (1 Per Second)
- $\mathbf{R}_{\mathrm{A}: \mathrm{B}}$ A to B Ratio
- $R_{B: A} B$ to A Ratio
- t Time (Second)
- $\mathbf{t}_{1 / 2, \mathrm{~A}}$ Half life of A (Second)
- $\mathbf{t}_{1 / 2, \mathrm{~B}}$ Half life of B (Second)
- $\mathbf{t}_{\text {maxB }}$ Time at maxB (Second)

Constants, Functions, Measurements used

- Function: $\exp , \exp ($ Number $)$

Exponential function

- Function: $\ln , \ln ($ Number $)$

Natural logarithm function (base e)

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Molar Concentration in Mole per Liter (mol/L)

Molar Concentration Unit Conversion

- Measurement: First Order Reaction Rate Constant in 1 Per Second (s^{-1}) First Order Reaction Rate Constant Unit Conversion

Check other formula lists

- Consecutive Reactions Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

