

Theories of Failure Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

Theories of Failure Formulas...

List of 20 Theories of Failure Formulas

Theories of Failure 🕑

Distortion Energy Theory

1) Distortion Strain Energy

$$\mathbf{K} \left[\mathrm{U}_{\mathrm{d}} = rac{\left(1+\mathbf{v}
ight)}{6\cdot\mathrm{E}} \cdot \left(\left(\mathrm{\sigma}_{1} - \mathrm{\sigma}_{2}
ight)^{2} + \left(\mathrm{\sigma}_{2} - \mathrm{\sigma}_{3}
ight)^{2} + \left(\mathrm{\sigma}_{3} - \mathrm{\sigma}_{1}
ight)^{2}
ight)
ight]$$

Open Calculator

$$1.56 \mathrm{kJ/m^3} = rac{(1+0.3)}{6\cdot 190 \mathrm{GPa}} \cdot \left((35 \mathrm{N/mm^2} - 47 \mathrm{N/mm^2})^2 + (47 \mathrm{N/mm^2} - 65 \mathrm{N/mm^2})^2 + (65 \mathrm{N/mm^2} - 35 \mathrm{$$

2) Distortion Strain Energy for Yielding

$$\mathcal{L} U_{\rm d} = \frac{(1+\mathbf{v})}{3\cdot \mathrm{E}} \cdot \sigma_{\rm y}^2$$

$$16.47807 \text{kJ/m}^3 = \frac{(1.147)^2}{3 \cdot 190 \text{GPa}} \cdot (85 \text{N/mm}^2)^2$$

3) Shear Yield Strength by Maximum Distortion Energy Theorem 🕑

$$\left[\mathbf{S}_{\mathrm{sy}} = 0.577 \cdot \mathbf{\sigma}_{\mathrm{y}}
ight]$$
 Open Calculator (2)

0

ex $49.045 \text{N/mm}^2 = 0.577 \cdot 85 \text{N/mm}^2$

4) Shear Yield Strength by Maximum Distortion Energy Theory 🚰

$$\kappa S_{
m sy} = 0.577 \cdot \sigma_{
m yt}$$
 Open Calculator (2)

ex $4.9E^{-6}N/mm^{2} = 0.577 \cdot 8.5N/m^{2}$

5) Strain Energy due to Change in Volume given Principal Stresses 🛃

$$\mathbf{v} = rac{(1-2\cdot \mathbf{v})}{6\cdot \mathrm{E}} \cdot \left(\mathbf{\sigma}_1 + \mathbf{\sigma}_2 + \mathbf{\sigma}_3
ight)^2$$

$$\boxed{7.582105 \text{kJ/m}^3 = \frac{(1-2\cdot0.3)}{6\cdot190 \text{GPa}} \cdot (35 \text{N/mm}^2 + 47 \text{N/mm}^2 + 65 \text{N/mm}^2)^2}$$

Open Calculator 🕑

Theories of Failure Formulas...

6) Strain Energy due to Change in Volume given Volumetric Stress 🖸

$$\left(\begin{array}{c} U_{v} = \frac{3}{2} \cdot \sigma_{v} \cdot \varepsilon_{v} \right)$$

$$\left(\begin{array}{c} 0 \text{ pen Calculator } \left(\begin{array}{c} 0 \text{ pen$$

Theories of Failure Formulas...

11) Tensile Yield Strength for Biaxial Stress by Distortion Energy Theorem Considering Factor of Safety (
(a)
$$\sigma_y = f_s \cdot \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \cdot \sigma_2}$$

(b) $\sigma_y = f_s \cdot \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \cdot \sigma_2}$
(c) $strength (1 + 1)$
(c) $strength (1 + 1)$
(c) $strength (1 + 1)$
(c) $trength (1 + 1)$

17) Allowable Stress in Ductile Material under Tensile Loading 🕑

Maximum Shear Stress Theory 🕑

fx
$$S_{sy} = \frac{\sigma_{yt}}{2}$$

ex $4.3E^{-6}N/mm^2 = \frac{8.5N/m^2}{2}$

19) Shear Yield Strength given Tensile Yield Strength 🕑

fx
$$\mathrm{S_{sy}}=rac{\sigma_{\mathrm{y}}}{2}$$

ex $42.5 \text{N/mm}^2 = \frac{85 \text{N/mm}^2}{2}$

20) Tensile Yield Strength given Shear Yield Strength 🗹

fx
$$\sigma_{
m y} = 2 \cdot {
m S}_{
m sy}$$

ex $85 \mathrm{N/mm^2} = 2 \cdot 42.5 \mathrm{N/mm^2}$

Open Calculator

Open Calculator 🕑

Open Calculator 🗹

Open Calculator 🕑

Variables Used

- E Young's Modulus of Specimen (Gigapascal)
- + $\mathbf{f_S}$ Factor of Safety
- Ssv Shear Yield Strength (Newton per Square Millimeter)
- Ssv Shear Yield Strength (Newton per Square Millimeter)
- Suc Ultimate Compressive Stress (Newton per Square Millimeter)
- Sut Ultimate Tensile Strength (Newton per Square Millimeter)
- Svc Compressive Yield Strength (Newton per Square Millimeter)
- Ud Strain Energy for Distortion (Kilojoule per Cubic Meter)
- UTotal Total Strain Energy per Unit Volume (Kilojoule per Cubic Meter)
- U_v Strain Energy for Volume Change (Kilojoule per Cubic Meter)
- $\boldsymbol{\epsilon}_{V}$ Strain for Volume Change
- σ₁ First Principal Stress (Newton per Square Millimeter)
- σ₂ Second Principal Stress (Newton per Square Millimeter)
- σ₃ Third Principal Stress (Newton per Square Millimeter)
- σ_{al} Allowable Stress for Static Load (Newton per Square Millimeter)
- σ_v Stress for Volume Change (Newton per Square Millimeter)
- σ_v Tensile Yield Strength (Newton per Square Millimeter)
- σ_{vt} Tensile Yield Strength (Newton per Square Meter)
- v Poisson's Ratio

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number) Square root function
- Measurement: Pressure in Gigapascal (GPa), Newton per Square Meter (N/m²) Pressure Unit Conversion
- Measurement: Energy Density in Kilojoule per Cubic Meter (kJ/m³) Energy Density Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²) Stress Unit Conversion

Check other formula lists

Design for Brittle and Ductile Material under Static

- Load Formulas
- Design of Curved Beams Formulas
- Design of Shaft for Torsional Moment Formulas G

Feel free to SHARE this document with your friends!

Fracture Mechanics Formulas

Theories of Failure Formulas

Stresses due to Bending Moment Formulas

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/20/2023 | 4:37:54 AM UTC

Please leave your feedback here ...

