
calculatoratoz.com

unitsconverters.com

Hydroelectric Power Plant Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Hydroelectric Power Plant Formulas

Hydroelectric Power Plant ©

1) Angular Velocity of Wheel
$\mathrm{fx} \omega=\frac{2 \cdot \pi \cdot \mathrm{~N}}{60}$
ex $3.838179 \mathrm{rad} / \mathrm{s}=\frac{2 \cdot \pi \cdot 350 \mathrm{r} / \mathrm{min}}{60}$
2) Diameter of Bucket
$f \mathrm{x} \mathrm{D}_{\mathrm{b}}=\frac{60 \cdot \mathrm{~V}_{\mathrm{b}}}{\pi \cdot \mathrm{N}}$
ex $1.22975 \mathrm{~m}=\frac{60 \cdot 2.36 \mathrm{~m} / \mathrm{s}}{\pi \cdot 350 \mathrm{r} / \mathrm{min}}$
3) Dimensionless Specific Speed $\sqrt{ }$
$f \times\left(N_{S}^{\prime}\right)=\frac{N \cdot \sqrt{\frac{P_{h}}{1000}}}{\sqrt{\rho_{w}} \cdot([g] \cdot H)^{\frac{5}{4}}}$
Open Calculator

$$
0.004819=\frac{350 \mathrm{r} / \mathrm{min} \cdot \sqrt{\frac{5145 \mathrm{~kW}}{1000}}}{\sqrt{1000 \mathrm{~kg} / \mathrm{m}^{3}} \cdot([\mathrm{~g}] \cdot 250 \mathrm{~m})^{\frac{5}{4}}}
$$

4) Efficiency of Turbine given Energy
$\mathrm{fx} \eta=\frac{\mathrm{E}}{[\mathrm{g}] \cdot \rho_{\mathrm{w}} \cdot \mathrm{Q} \cdot \mathrm{H} \cdot \mathrm{t}}$

Open Calculator

ex $0.799454=\frac{36056 \mathrm{MW}^{*} \mathrm{~h}}{[\mathrm{~g}] \cdot 1000 \mathrm{~kg} / \mathrm{m}^{3} \cdot 2.1 \mathrm{~m}^{3} / \mathrm{s} \cdot 250 \mathrm{~m} \cdot 8760 \mathrm{~h}}$
5) Energy Produced by Hydroelectric Power Plant
$f_{\mathrm{x}} \mathrm{E}=[\mathrm{g}] \cdot \rho_{\mathrm{w}} \cdot \mathrm{Q} \cdot \mathrm{H} \cdot \eta \cdot \mathrm{t}$
Open Calculator
ex $36080.63 \mathrm{MW}^{*} \mathrm{~h}=[\mathrm{g}] \cdot 1000 \mathrm{~kg} / \mathrm{m}^{3} \cdot 2.1 \mathrm{~m}^{3} / \mathrm{s} \cdot 250 \mathrm{~m} \cdot 0.8 \cdot 8760 \mathrm{~h}$
6) Energy Produced by Hydroelectric Power Plant given Power
$f x E=P_{h} \cdot \eta \cdot t$
ex $36056.16 \mathrm{MW}^{*} \mathrm{~h}=5145 \mathrm{~kW} \cdot 0.8 \cdot 8760 \mathrm{~h}$
7) Flow Rate of Water given Power
$f \mathrm{fx} \mathrm{Q}=\frac{\mathrm{P}_{\mathrm{h}}}{[\mathrm{g}] \cdot \rho_{\mathrm{w}} \cdot \mathrm{H}}$
Open Calculator
ex $2.098576 \mathrm{~m}^{3} / \mathrm{s}=\frac{5145 \mathrm{~kW}}{[\mathrm{~g}] \cdot 1000 \mathrm{~kg} / \mathrm{m}^{3} \cdot 250 \mathrm{~m}}$
8) Head or Height of Fall of Water given Power

ex $249.8305 \mathrm{~m}=\frac{5145 \mathrm{~kW}}{[\mathrm{~g}] \cdot 1000 \mathrm{~kg} / \mathrm{m}^{3} \cdot 2.1 \mathrm{~m}^{3} / \mathrm{s}}$
9) Height of Fall of Pelton Wheel Turbine Power Plant
f. $\mathrm{H}=\frac{\mathrm{V}_{\mathrm{J}}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{C}_{\mathrm{v}}^{2}}$
ex $250.049 \mathrm{~m}=\frac{(68.63 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot(0.98)^{2}}$
10) Hydroelectric Power $\boxed{\Omega}$
$f x P_{h}=[g] \cdot \rho_{w} \cdot Q \cdot H$
ex $5148.491 \mathrm{~kW}=[\mathrm{g}] \cdot 1000 \mathrm{~kg} / \mathrm{m}^{3} \cdot 2.1 \mathrm{~m}^{3} / \mathrm{s} \cdot 250 \mathrm{~m}$
11) Jet Ratio of Hydroelectric Power Plant $\sqrt{ }$
fx $J=\frac{D_{b}}{D_{n}}$
Open Calculator ©
$\mathrm{ex} 15=\frac{1.23 \mathrm{~m}}{0.082 \mathrm{~m}}$

12) Number of Jets

$f_{\mathrm{x}} \mathrm{n}_{\mathrm{J}}=\left(\frac{\mathrm{N}_{\mathrm{SMJ}}}{\mathrm{N}_{\mathrm{SSJ}}}\right)^{2}$
$\operatorname{ex} 6=\left(73.49 \mathrm{r} / \min \frac{}{30 \mathrm{r} /} \min \right)^{2}$
13) Power given Unit Power
$f x P_{h}=P_{u} \cdot 1000 \cdot H^{\frac{3}{2}}$
Open Calculator
ex $5138.701 \mathrm{~kW}=1.3 \cdot 1000 \cdot(250 \mathrm{~m})^{\frac{3}{2}}$
14) Specific Speed of Multi Jet Machine
$f \mathrm{f} \quad \mathrm{N}_{\mathrm{SMJ}}=\sqrt{\mathrm{n}_{\mathrm{J}}} \cdot \mathrm{N}_{\mathrm{SSJ}}$
Open Calculator
ex $73.48469 \mathrm{r} / \mathrm{min}=\sqrt{6} \cdot 30 \mathrm{r} / \mathrm{min}$
15) Specific Speed of Single Jet Machine
$f \times \mathrm{N}_{\mathrm{SSJ}}=\frac{\mathrm{N}_{\mathrm{SMJ}}}{\sqrt{\mathrm{n}_{\mathrm{J}}}}$
Open Calculator
ex $30.00217 \mathrm{r} / \min =73.49 \mathrm{r} / \min \frac{}{\sqrt{6}}$
16) Specific Speed of Turbine of Hydroelectric Power Plant
$f x N_{S}=\frac{N \cdot \sqrt{\frac{\mathrm{P}_{\mathrm{h}}}{1000}}}{\mathrm{H}^{\frac{5}{4}}}$
Open Calculator
$\mathrm{ex} 25.25432 \mathrm{r} / \min =\frac{350 \mathrm{r} / \min \cdot \sqrt{\frac{5145 \mathrm{~kW}}{1000}}}{(250 \mathrm{~m})^{\frac{5}{4}}}$
17) Speed of Bucket given Angular Velocity and Radius
$f_{x} V_{b}=\omega \cdot \frac{D_{b}}{2}$
Open Calculator
ex $2.35545 \mathrm{~m} / \mathrm{s}=3.83 \mathrm{rad} / \mathrm{s} \cdot \frac{1.23 \mathrm{~m}}{2}$
18) Speed of Bucket given Diameter and RPM
$f \mathrm{fx} \mathrm{V}_{\mathrm{b}}=\frac{\pi \cdot \mathrm{D}_{\mathrm{b}} \cdot \mathrm{N}}{60}$
ex $2.36048 \mathrm{~m} / \mathrm{s}=\frac{\pi \cdot 1.23 \mathrm{~m} \cdot 350 \mathrm{r} / \mathrm{min}}{60}$
19) Speed of Turbine given Unit Speed
$f \mathbf{f x}=\mathrm{N}_{\mathrm{u}} \cdot \sqrt{\mathrm{H}}$
Open Calculator
ex $348.7814 \mathrm{r} / \mathrm{min}=2.31 \cdot \sqrt{250 \mathrm{~m}}$

目
20) Tidal Energy
$\mathrm{fx}_{\mathrm{x}} \mathrm{P}_{\mathrm{t}}=0.5 \cdot \mathrm{~A} \cdot \rho_{\mathrm{w}} \cdot[\mathrm{g}] \cdot \mathrm{H}^{2}$

Open Calculator 〔

ex $7.7 \mathrm{E}^{\wedge} 8 \mathrm{~kW}=0.5 \cdot 2500 \mathrm{~m}^{2} \cdot 1000 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}] \cdot(250 \mathrm{~m})^{2}$
21) Unit Power of Hydroelectric Power Plant
f. $P_{u}=\frac{\frac{P_{h}}{1000}}{H^{\frac{3}{2}}}$
$\operatorname{ex} 1.301593=\frac{\frac{5145 \mathrm{~kW}}{1000}}{(250 \mathrm{~m})^{\frac{3}{2}}}$
22) Unit Speed of Turbine
$f x N_{u}=\frac{N}{\sqrt{H}}$
Open Calculator
ex $2.318071=\frac{350 \mathrm{r} / \mathrm{min}}{\sqrt{250 \mathrm{~m}}}$
23) Velocity of Jet from Nozzle
$f \mathrm{f} \quad \mathrm{V}_{\mathrm{J}}=\mathrm{C}_{\mathrm{v}} \cdot \sqrt{2 \cdot[\mathrm{~g}] \cdot \mathrm{H}}$
Open Calculator
ex $68.62327 \mathrm{~m} / \mathrm{s}=0.98 \cdot \sqrt{2 \cdot[\mathrm{~g}] \cdot 250 \mathrm{~m}}$

Variables Used

- A Area of Base (Square Meter)
- $\mathbf{C}_{\mathbf{v}}$ Coefficient of Velocity
- $\mathbf{D}_{\mathbf{b}}$ Bucket Circle Diameter (Meter)
- $\mathbf{D}_{\mathbf{n}}$ Nozzle Diameter (Meter)
- E Energy (Megawatt-Hour)
- H Fall Height (Meter)
- J Jet Ratio
- \mathbf{N} Working Speed (Revolution per Minute)
- $\mathbf{n}_{\mathbf{J}}$ Number of Jets
- $\mathbf{N}_{\mathbf{S}}$ Specific Speed (Revolution per Minute)
- $\mathbf{N}_{\mathbf{S}}$ 'Dimensionless Specific Speed
- $\mathbf{N}_{\text {SMJ }}$ Specific Speed of Multi Jet Machine (Revolution per Minute)
- $\mathbf{N}_{\text {SSJ }}$ Specific Speed of Single Jet Machine (Revolution per Minute)
- $\mathbf{N}_{\mathbf{u}}$ Unit Speed
- $\mathbf{P}_{\mathbf{h}}$ Hydroelectric Power (Kilowatt)
- $\mathbf{P}_{\mathbf{t}}$ Tidal Power (Kilowatt)
- $\mathbf{P}_{\mathbf{u}}$ Unit Power
- Q Flow Rate (Cubic Meter per Second)
- t Operating Time per Year (Hour)
- $\mathbf{V}_{\mathbf{b}}$ Bucket Velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{J}}$ Velocity of Jet (Meter per Second)
- $\boldsymbol{\eta}$ Turbine Efficiency
- $\boldsymbol{\rho}_{\mathbf{w}}$ Water Density (Kilogram per Cubic Meter)
- $\boldsymbol{\omega}$ Angular Velocity (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665 Meter/Second² Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Hour (h)

Time Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Energy in Megawatt-Hour (MW*h)

Energy Unit Conversion

- Measurement: Power in Kilowatt (kW)

Power Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion
- Measurement: Angular Velocity in Radian per Second (rad/s), Revolution per Minute (r/min)
Angular Velocity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion

Check other formula lists

- Diesel Engine Power Plant Formulas
- Hydroelectric Power Plant Formulas
- Power Plant Operational Factors Formulas
- Thermal Power Plant Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

