Important Formulas of Scalene Triangle

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 28 Important Formulas of Scalene Triangle

Important Formulas of Scalene Triangle ©

Angles of Scalene Triangle ©

1) Larger Angle of Scalene Triangle
$\mathbf{f x} \angle_{\text {Larger }}=a \cos \left(\frac{\mathrm{~S}_{\text {Medium }}^{2}+\mathrm{S}_{\text {Shorter }}^{2}-\mathrm{S}_{\text {Longer }}^{2}}{2 \cdot \mathrm{~S}_{\text {Medium }} \cdot \mathrm{S}_{\text {Shorter }}}\right)$
ex $111.8037^{\circ}=a \cos \left(\frac{(14 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}-(20 \mathrm{~m})^{2}}{2 \cdot 14 \mathrm{~m} \cdot 10 \mathrm{~m}}\right)$
2) Larger Angle of Scalene Triangle given other Angles
$\mathrm{fx} \angle_{\text {Larger }}=\pi-\left(\angle_{\text {Medium }}+\angle_{\text {Smaller }}\right)$
ex $110^{\circ}=\pi-\left(40^{\circ}+30^{\circ}\right)$
3) Medium Angle of Scalene Triangle
$\mathrm{fx} \angle_{\text {Medium }}=a \cos \left(\frac{\mathrm{~S}_{\text {Longer }}^{2}+\mathrm{S}_{\text {Shorter }}^{2}-\mathrm{S}_{\text {Medium }}^{2}}{2 \cdot \mathrm{~S}_{\text {Longer }} \cdot \mathrm{S}_{\text {Shorter }}}\right)$
ex $40.5358^{\circ}=a \cos \left(\frac{(20 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}-(14 \mathrm{~m})^{2}}{2 \cdot 20 \mathrm{~m} \cdot 10 \mathrm{~m}}\right)$
4) Medium Angle of Scalene Triangle given Longer Side, Medium Side and Larger Angle
$\mathrm{fx} \angle_{\text {Medium }}=a \sin \left(\frac{\mathrm{~S}_{\text {Medium }}}{\mathrm{S}_{\text {Longer }}} \cdot \sin \left(\angle_{\text {Larger }}\right)\right)$
ex $41.13115^{\circ}=a \sin \left(\frac{14 \mathrm{~m}}{20 \mathrm{~m}} \cdot \sin \left(110^{\circ}\right)\right)$
5) Smaller Angle of Scalene Triangle
$f \mathbf{x} \angle_{\text {Smaller }}=a \cos \left(\frac{\mathrm{~S}_{\text {Longer }}^{2}+\mathrm{S}_{\text {Medium }}^{2}-\mathrm{S}_{\text {Shorter }}^{2}}{2 \cdot \mathrm{~S}_{\text {Longer }} \cdot \mathrm{S}_{\text {Medium }}}\right)$
ex $27.66045^{\circ}=a \cos \left(\frac{(20 \mathrm{~m})^{2}+(14 \mathrm{~m})^{2}-(10 \mathrm{~m})^{2}}{2 \cdot 20 \mathrm{~m} \cdot 14 \mathrm{~m}}\right)$
6) Smaller Angle of Scalene Triangle given Medium Side, Shorter Side and Medium Angle
$\mathrm{fx} \angle_{\text {Smaller }}=a \sin \left(\frac{\mathrm{~S}_{\text {Shorter }}}{\mathrm{S}_{\text {Medium }}} \cdot \sin \left(\angle_{\text {Medium }}\right)\right)$
ex $27.33124^{\circ}=a \sin \left(\frac{10 \mathrm{~m}}{14 \mathrm{~m}} \cdot \sin \left(40^{\circ}\right)\right)$

Area of Scalene Triangle

7) Area of Scalene Triangle

$$
\mathrm{A}=\frac{\sqrt{\left(\mathrm{S}_{\text {Longer }}+\mathrm{S}_{\text {Medium }}+\mathrm{S}_{\text {Shorter }}\right) \cdot\left(\mathrm{S}_{\text {Medium }}+\mathrm{S}_{\text {Shorter }}-\mathrm{S}_{\text {Longer }}\right) \cdot\left(\mathrm{S}_{\text {Longer }}+\mathrm{S}_{\text {Shorter }}-\mathrm{S}_{\mathrm{N}}\right.}}{4}
$$

ex
$64.99231 \mathrm{~m}^{2}=\frac{\sqrt{(20 \mathrm{~m}+14 \mathrm{~m}+10 \mathrm{~m}) \cdot(14 \mathrm{~m}+10 \mathrm{~m}-20 \mathrm{~m}) \cdot(20 \mathrm{~m}+10 \mathrm{~m}-14 \mathrm{~m}) \cdot(20 \mathrm{~m}+14 \mathrm{~m}-10 \mathrm{~m})}}{4}$
8) Area of Scalene Triangle given Larger Angle and Adjacent Sides
$f \mathrm{~A}=\frac{\mathrm{S}_{\text {Medium }} \cdot \mathrm{S}_{\text {Shorter }} \cdot \sin \left(\angle_{\text {Larger }}\right)}{2}$
Open Calculator
ex $65.77848 \mathrm{~m}^{2}=\frac{14 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sin \left(110^{\circ}\right)}{2}$
9) Area of Scalene Triangle given Medium Angle and Adjacent Sides
$f \mathrm{fx}=\frac{\mathrm{S}_{\text {Longer }} \cdot S_{\text {Shorter }} \cdot \sin \left(\angle_{\text {Medium }}\right)}{2}$
ex $64.27876 \mathrm{~m}^{2}=\frac{20 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sin \left(40^{\circ}\right)}{2}$
10) Area of Scalene Triangle given Smaller Angle and Adjacent Sides
$f \times \mathrm{A}=\frac{\mathrm{S}_{\text {Longer }} \cdot \mathrm{S}_{\text {Medium }} \cdot \sin \left(\angle_{\text {Smaller }}\right)}{2}$
Open Calculator ©
ex $70 \mathrm{~m}^{2}=\frac{20 \mathrm{~m} \cdot 14 \mathrm{~m} \cdot \sin \left(30^{\circ}\right)}{2}$

Circumcircle of Scalene Triangle

11) Area of Circumcircle of Scalene Triangle given Shorter Side and Smaller Angle
$f \mathrm{f} \mathrm{A}_{\text {Circumcircle }}=\frac{\pi}{4} \cdot\left(\frac{\mathrm{~S}_{\text {Shorter }}}{\sin \left(\angle_{\text {Smaller }}\right)}\right)^{2}$
ex $314.1593 \mathrm{~m}^{2}=\frac{\pi}{4} \cdot\left(\frac{10 \mathrm{~m}}{\sin \left(30^{\circ}\right)}\right)^{2}$
12) Circumference of Circumcircle of Scalene Triangle given Medium Side and Medium Angle

13) Circumradius of Scalene Triangle

$$
r_{c}=\frac{S_{\text {Longer }} \cdot S_{\text {Medium }} \cdot S_{\text {Shorter }}}{\sqrt{\left(\mathrm{S}_{\text {Longer }}+\mathrm{S}_{\text {Medium }}+\mathrm{S}_{\text {Shorter }}\right) \cdot\left(\mathrm{S}_{\text {Longer }}+\mathrm{S}_{\text {Medium }}-\mathrm{S}_{\text {Shorter }}\right) \cdot\left(\mathrm{S}_{\text {Longer }}+\mathrm{S}_{\text {Shorter }}-\mathrm{S}_{\mathrm{I}}\right.}}
$$

ex
$10.77051 \mathrm{~m}=\frac{20 \mathrm{~m} \cdot 14 \mathrm{~m} \cdot 10 \mathrm{~m}}{\sqrt{(20 \mathrm{~m}+14 \mathrm{~m}+10 \mathrm{~m}) \cdot(20 \mathrm{~m}+14 \mathrm{~m}-10 \mathrm{~m}) \cdot(20 \mathrm{~m}+10 \mathrm{~m}-14 \mathrm{~m}) \cdot(14 \mathrm{~m}+10 \mathrm{~m}-20 \mathrm{~m})}}$
14) Circumradius of Scalene Triangle given Longer Side and Larger Angle Ξ
$f \mathrm{f} \mathrm{r}_{\mathrm{c}}=\frac{\mathrm{S}_{\text {Longer }}}{2 \cdot \sin \left(\angle_{\text {Larger }}\right)}$
ex $10.64178 \mathrm{~m}=\frac{20 \mathrm{~m}}{2 \cdot \sin \left(110^{\circ}\right)}$

Heights of Scalene Triangle

15) Height on Longer Side of Scalene Triangle given Medium Side and Smaller Angle
$f \mathbf{f} \mathrm{~h}_{\text {Longer }}=\mathrm{S}_{\text {Medium }} \cdot \sin \left(\angle_{\text {Smaller }}\right)$
ex $7 \mathrm{~m}=14 \mathrm{~m} \cdot \sin \left(30^{\circ}\right)$
16) Height on Medium Side of Scalene Triangle given Shorter Side and Larger Angle
$f \mathrm{x} \mathrm{h}_{\text {Medium }}=\mathrm{S}_{\text {Shorter }} \cdot \sin \left(\angle_{\text {Larger }}\right)$
ex $9.396926 \mathrm{~m}=10 \mathrm{~m} \cdot \sin \left(110^{\circ}\right)$
17) Height on Shorter Side of Scalene Triangle given Longer Side and Medium Angle
$\mathrm{fx} \mathrm{h}_{\text {Shorter }}=\mathrm{S}_{\text {Longer }} \cdot \sin \left(\angle_{\text {Medium }}\right)$
ex $12.85575 \mathrm{~m}=20 \mathrm{~m} \cdot \sin \left(40^{\circ}\right)$

Medians of Scalene Triangle

18) Median on Longer Side of Scalene Triangle given Three Sides
$f \times \mathrm{M}_{\text {Longer }}=\frac{\sqrt{2 \cdot\left(\mathrm{~S}_{\text {Medium }}^{2}+\mathrm{S}_{\text {Shorter }}^{2}\right)-\mathrm{S}_{\text {Longer }}^{2}}}{2}$
ex $6.928203 \mathrm{~m}=\frac{\sqrt{2 \cdot\left((14 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}\right)-(20 \mathrm{~m})^{2}}}{2}$
19) Median on Medium Side of Scalene Triangle given Three Sides
$\mathrm{fx} \mathrm{M}_{\text {Medium }}=\frac{\sqrt{2 \cdot\left(\mathrm{~S}_{\text {Longer }}^{2}+\mathrm{S}_{\text {Shorter }}^{2}\right)-\mathrm{S}_{\text {Medium }}^{2}}}{2}$
ex $14.17745 \mathrm{~m}=\frac{\sqrt{2 \cdot\left((20 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}\right)-(14 \mathrm{~m})^{2}}}{2}$
20) Median on Shorter Side of Scalene Triangle given Three Sides
$f \times M_{\text {Shorter }}=\frac{\sqrt{2 \cdot\left(S_{\text {Longer }}^{2}+S_{\text {Medium }}^{2}\right)-S_{\text {Shorter }}^{2}}}{2}$
$\operatorname{ex} 16.52271 \mathrm{~m}=\frac{\sqrt{2 \cdot\left((20 \mathrm{~m})^{2}+(14 \mathrm{~m})^{2}\right)-(10 \mathrm{~m})^{2}}}{2}$

Other Formulas of Scalene Triangle

21) Inradius of Scalene Triangle by Heron's Formula
$f x r_{i}=\sqrt{\frac{\left(s-S_{\text {Longer }}\right) \cdot\left(s-S_{\text {Medium }}\right) \cdot\left(s-S_{\text {Shorter }}\right)}{s}}$
$\mathbf{e x} 2.954196 \mathrm{~m}=\sqrt{\frac{(22 \mathrm{~m}-20 \mathrm{~m}) \cdot(22 \mathrm{~m}-14 \mathrm{~m}) \cdot(22 \mathrm{~m}-10 \mathrm{~m})}{22 \mathrm{~m}}}$
22) Perimeter of Scalene Triangle
$f \mathrm{f} P=\mathrm{S}_{\text {Longer }}+\mathrm{S}_{\text {Medium }}+\mathrm{S}_{\text {Shorter }}$
ex $44 m=20 m+14 m+10 m$

Sides of Scalene Triangle

23) Longer Side of Scalene Triangle given Larger Angle and other Sides
$f x S_{\text {Longer }}=\sqrt{S_{\text {Medium }}^{2}+S_{\text {Shorter }}^{2}-2 \cdot S_{\text {Medium }} \cdot S_{\text {Shorter }} \cdot \cos \left(\angle_{\text {Larger }}\right)}$
ex $19.79307 \mathrm{~m}=\sqrt{(14 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}-2 \cdot 14 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \cos \left(110^{\circ}\right)}$
24) Longer Side of Scalene Triangle given Larger Angle, Medium Angle and Medium Side
$f x S_{\text {Longer }}=S_{\text {Medium }} \cdot \frac{\sin \left(\angle_{\text {Larger }}\right)}{\sin \left(\angle_{\text {Medium }}\right)}$
ex $20.46663 \mathrm{~m}=14 \mathrm{~m} \cdot \frac{\sin \left(110^{\circ}\right)}{\sin \left(40^{\circ}\right)}$
25) Medium Side of Scalene Triangle given Medium Angle and other Sides
$f x S_{\text {Medium }}=\sqrt{S_{\text {Longer }}^{2}+S_{\text {Shorter }}^{2}-2 \cdot S_{\text {Longer }} \cdot S_{\text {Shorter }} \cdot \cos \left(\angle_{\text {Medium }}\right)}$
ex $13.91338 \mathrm{~m}=\sqrt{(20 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}-2 \cdot 20 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \cos \left(40^{\circ}\right)}$
26) Medium Side of Scalene Triangle given Medium Angle, Smaller Angle and Shorter Side
$f x S_{\text {Medium }}=S_{\text {Shorter }} \cdot \frac{\sin \left(\angle_{\text {Medium }}\right)}{\sin \left(\angle_{\text {Smaller }}\right)}$
ex $12.85575 \mathrm{~m}=10 \mathrm{~m} \cdot \frac{\sin \left(40^{\circ}\right)}{\sin \left(30^{\circ}\right)}$
27) Shorter Side of Scalene Triangle given Smaller Angle and other Sides
$f \mathbf{f x} \mathrm{~S}_{\text {Shorter }}=\sqrt{\mathrm{S}_{\text {Longer }}^{2}+\mathrm{S}_{\text {Medium }}^{2}-2 \cdot \mathrm{~S}_{\text {Longer }} \cdot \mathrm{S}_{\text {Medium }} \cdot \cos \left(\angle_{\text {Smaller }}\right)}$
ex $10.53688 \mathrm{~m}=\sqrt{(20 \mathrm{~m})^{2}+(14 \mathrm{~m})^{2}-2 \cdot 20 \mathrm{~m} \cdot 14 \mathrm{~m} \cdot \cos \left(30^{\circ}\right)}$
28) Shorter Side of Scalene Triangle given Smaller Angle, Larger Angle and Longer Side
$f \mathrm{fx} \mathrm{S}_{\text {Shorter }}=\mathrm{S}_{\text {Longer }} \cdot \frac{\sin \left(\angle_{\text {Smaller }}\right)}{\sin \left(\angle_{\text {Larger }}\right)}$
ex $10.64178 \mathrm{~m}=20 \mathrm{~m} \cdot \frac{\sin \left(30^{\circ}\right)}{\sin \left(110^{\circ}\right)}$

Variables Used

- \angle Larger Larger Angle of Scalene Triangle (Degree)
- LMedium Medium Angle of Scalene Triangle (Degree)
- \angle Smaller Smaller Angle of Scalene Triangle (Degree)
- A Area of Scalene Triangle (Square Meter)
- Acircumcircle Area of Circumcircle of Scalene Triangle (Square Meter)
- Circumcircle Circumference of Circumcircle of Scalene Triangle (Meter)
- $\mathbf{h}_{\text {Longer }}$ Height on Longer Side of Scalene Triangle (Meter)
- $\mathbf{h}_{\text {Medium }}$ Height on Medium Side of Scalene Triangle (Meter)
- $\mathbf{h}_{\text {Shorter }}$ Height on Shorter Side of Scalene Triangle (Meter)
- MLonger Median on Longer Side of Scalene Triangle (Meter)
- $\mathbf{M}_{\text {Medium }}$ Median on Medium Side of Scalene Triangle (Meter)
- $\mathbf{M}_{\text {Shorter }}$ Median on Shorter Side of Scalene Triangle (Meter)
- P Perimeter of Scalene Triangle (Meter)
- $\mathbf{r}_{\mathbf{c}}$ Circumradius of Scalene Triangle (Meter)
- $\mathbf{r}_{\mathbf{i}}$ Inradius of Scalene Triangle (Meter)
- s Semiperimeter of Scalene Triangle (Meter)
- $S_{\text {Longer }}$ Longer Side of Scalene Triangle (Meter)
- $\mathrm{S}_{\text {Medium }}$ Medium Side of Scalene Triangle (Meter)
- S Shorter Shorter Side of Scalene Triangle (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: acos, acos(Number)

Inverse trigonometric cosine function

- Function: asin, asin(Number)

Inverse trigonometric sine function

- Function: cos, \cos (Angle)

Trigonometric cosine function

- Function: $\boldsymbol{\operatorname { s i n }}, \sin ($ Angle)

Trigonometric sine function

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Area in Square Meter $\left(\mathrm{m}^{2}\right)$

Area Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

Check other formula lists

- Equilateral Triangle Formulas
- Isosceles Right Triangle Formulas
- Isosceles Triangle Formulas
- Right Angled Triangle Formulas
- Scalene Triangle Formulas
- Triangle Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

